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SUMMARY

Two-dimensional shallow water models with porosity appear as an interesting path for the large-scale
modelling of floodplains with urbanized areas. The porosity accounts for the reduction in storage and
in the exchange sections due to the presence of buildings and other structures in the floodplain. The
introduction of a porosity into the two-dimensional shallow water equations leads to modified expressions
for the fluxes and source terms. An extra source term appears in the momentum equation. This paper
presents a discretization of the modified fluxes using a modified HLL Riemann solver on unstructured
grids. The source term arising from the gradients in the topography and in the porosity is treated in an
upwind fashion so as to enhance the stability of the solution. The Riemann solver is tested against new
analytical solutions with variable porosity. A new formulation is proposed for the macroscopic head
loss in urban areas. An application example is presented, where the large scale model with porosity
is compared to a refined flow model containing obstacles that represent a schematic urban area. The
quality of the results illustrates the potential usefulness of porosity-based shallow water models for large
scale floodplain simulations. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The recent interest for flood simulation involving urbanized areas [1—6] has drawn the atten-
tion to the possible use of modified shallow water models with porosity for large scale flood

*Correspondence to: Vincent Guinot, HydroSciences Montpellier, UMR 5569 (UM1, UM2, IRD, CNRS), Université
Montpellier 2, Maison des Sciences de I’Eau, 34095 Montpellier Cedex 5, France.

TE-mail: guinot@msem.univ-montp2.fr

YE-mail: soares@gce.ucl.ac.be

Contract/grant sponsor: Université catholique de Louvain-la-Neuve

Received 29 October 2004
Revised 26 June 2005
Copyright © 2005 John Wiley & Sons, Ltd. Accepted 3 July 2005



310 V. GUINOT AND S. SOARES-FRAZAO

simulations involving urbanized areas. The modified shallow water equations with porosity
were first introduced in a simplified form by Defina et al. [7] and later modified by Hervouet
et al. [8]. In these modified equations the porosity accounts for the presence of buildings,
structures, etc. that restrict the area available to water flow. The influence of the porosity
is twofold in that it expresses a restriction in (i) the area locally available to mass and
momentum storage and (ii) the mass and momentum fluxes in both directions of space. Shal-
low water models with porosity have a direct interest to floodplain and urban flood modelling
in that they allow the influence of urbanized areas on the flow to be represented using the
statistical properties of the urban network, without the need for a detailed description of the
urban geometry and the subsequent mesh refinement. Shallow water models with porosity
may therefore be used for large-scale simulations of flood-induced transients. The simula-
tion results may then be extracted and interpolated to provide boundary conditions to local,
refined flow models where the details of the urban areas are represented. Another possible use
of such models is the simulation of floodplain behaviour in the presence of urbanized areas
that condition partly the behaviour of the floodplain, but where the details of the flow within
the urban areas are not of direct interest.

The addition of a spatially varying porosity to the classical two-dimensional shallow water
equations yields additional source terms in the modified equations. Although similar in struc-
ture to the source terms induced by the topographical gradient, the porosity-induced source
term triggers the need for a specific treatment of both the continuity and momentum equa-
tions. The treatment of topographical source terms within Godunov-type algorithms [9] for the
solution of the classical shallow water equations has been the subject of intensive research
(see e.g. References [10—16] and the references therein for the derivation and application of
the various approaches available). The present paper aims (i) to propose an approximate Rie-
mann solver for the modified shallow water equations with porosity written in conservation
form on unstructured grids, coupled with an upwind treatment of source terms, (ii) to provide
new analytical and semi-analytical test cases that can be used as a basis for numerical method
assessment, and (iii) to provide a path for the determination of the macroscopic friction source
term that accounts for energy loss due to wave reflections against obstacles in the porous
zone. Solving the equations in conservation form allows discontinuous solutions (such as
hydraulic jumps, bores, etc.) to be computed accurately. The proposed solver is based on the
Harten-Lax-van Leer (HLL) formalism. The fluxes and source terms are computed within the
same step and the source terms are treated in an upwind fashion so as to satisfy equilibrium
and steady-state conditions. Section 2 presents the governing equations. Section 3 details the
computation of the fluxes and source terms. Section 4 is devoted to computational examples.
Section 5 provides concluding remarks.

2. GOVERNING EQUATIONS

The shallow water equations with porosity (see Appendix A for a detailed derivation) can be
written in conservation form as

0 0 0
U+ 2 (0F) + 5(96) =S (1)
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with
h huts hu, 0
U= |hu |, F= | +gh?2|, G= huyu, s S= | Sox+Srx (2)
hu,, hu.u, hu, + gh* /2 So.y +Sr.y

where g is the gravitational acceleration, / is the water depth, u, and u, are the x- and y-
velocities, respectively, Sy, and Sy, are the source terms arising from the bottom slopes and
porosity variations in the x- and y-directions, respectively, Sy« and Sy, are the source terms
arising from friction in the x- and y-directions, respectively, and ¢ is the porosity. In what
follows, ¢ is assumed to depend on the space coordinates only. The topographical source
terms are given by

. WA

So,x *¢gha+gja )
o RO

So,y *¢Qh@+97@

where z, is the bottom elevation. The first term on the right-hand side of Equation (3)
accounts for variations in the bottom level. The resulting force on the water body is exerted
only on a fraction ¢ of the total section of the control volume. The second term on the
right-hand side accounts for the longitudinal variations in the porosity. The friction terms
are assumed to result from (i) the bottom and wall shear stress, accounted for by Strickler’s
law, and (ii) the energy losses triggered by the flow regime variations and the multiple
wave reflections against obstacles in the porous zone, accounted for by a classical head loss
formulation

(uf +u3)'?

Sf,x = _(pgh K2h4/3 MX - ¢ghsx(u)2c + ui)l/zux
(u? +u?)"? s aun @
Spy= —d)gthih%”y — Qghs,(u; + ”y) / uy

where K is the Strickler coefficient (assumed to be isotropic in the present paper) and s,
and s, are head loss coefficients accounting for the singular head losses due to the ur-
ban singularities in the x- and y-directions, respectively. The choice of this formulation is
justified in Appendix B. Equation (1) can be rewritten in non-conservation (or characteristic)
form as

0 0 0
§(¢U)+Aa(¢U)+B@(¢U)=S (5)

It is easy to check that the matrices A and B are identical to the characteristic matrices of
the classical shallow water equations (i.e. the equations obtained by taking ¢ = 1). Therefore,
the structure and properties of the solution (number of waves and characteristic surfaces,
wave celerities and Riemann invariants) are identical to those of the solutions of the classical
shallow water equations. In what follows, Equation (1) is discretized using the finite volume
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Interface (i, j)

Figure 1. Definition sketch of the finite volume discretization.

approach on unstructured grids (Figure 1)

Ul =ur — P (¢F) T wi
¢A,,§(,) SO g

U7 is the average value of U over the cell i at the time level n, 4; is the area of the cell i,
F”“/ % is the average value of the flux vector in the direction normal to the interface (i, j)
between the time levels n and n + 1, N(i) is the set of neighbour cells of the cell i, P;; is
the matrix that accounts for the coordlnate change from the global (x, y) coordinate system
attached to the interface, w;; is the width of the interface (i, j), S;’H/ % is the average value
over the cell i between the time levels n and n+ 1 of the source term arising from the bottom
slope, porosity gradient and friction and At is the computational time step. The components
of Sf'“/ * are given by Equations (3) and (4). The matrix P; ; expresses the rotation from the
global coordinate system (x, y) to the local coordinate system (&, ¥/) attached to the interface.
The rotation leaves the water depth invariant and acts on the x- and y-unit discharges. The
expression of P, ; is therefore

Sn+1/2 (6)

1 0 0
Pi,j: 0 (,xj) (,3) (7)

0 nfi) nﬁf‘}
where n( and n(“j) are the x- and y-components, respectively, of the normal unit vector
between the cells i and j (orlented positive from i to j).

The flux F at the interface is computed using the following procedure. In a first step, the
Riemann problem in the global coordinate system (x, y) is transformed to the local coordinate
system (&, ) via a left-hand multiplication by P; 11 In a second step, the local Riemann
problem is solved using a modified Harten-Lax-van Leer (HLL) Riemann solver [17, 18]
described in Section 3. Eventually, the flux is transformed back to the (x, y) coordinate
system, as in Equation (6).
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3. FLUX AND SOURCE TERM COMPUTATION

In what follows it is assumed that the flow variables are available at the computational
time #*. The flow variables may have been reconstructed using any higher-order technique (e.g.
a multidimensional or dimensionally split MUSCL reconstruction [19]). The reconstruction
allows Riemann problems to be defined at each interface (i, j) between two adjacent cells
i and j. The Riemann problem is an initial value problem where the initial value of U
is piecewise constant, equal to U. and Ugr on the left- and right-hand side of the interface,
respectively (see References [20,21] for an overview of the various options available to define
UL and Uy from the reconstructed variables). In what follows the source term arising from
the bottom slope and the variations in the porosity is computed within the same step as the
fluxes. This step is described in Sections 3.1-3.3. The source term arising from friction is
accounted for in a separate step, described in Section 3.4.

3.1. Qverview of the algorithm

The present subsection focuses on the discretization of the flux F and the part of the source
term that arises from the bottom slope and the porosity gradient. As mentioned above the
friction source term is accounted for in a separate step. It is assumed in what follows that a
one-dimensional Riemann problem has been defined in the local coordinate system attached to
the interface as explained in the previous section. The equation to be solved in the direction
normal to the interface reduces to

SO+ S0P =S, (8)
with
h hu 0
U= |hu|, F= |m?+gh*2|, So= |Soc 9)
hv huv 0

where u and v are the velocity components in the direction normal and tangent to the interface,
respectively, and should not be confused with the velocity components u, and u, in the original
(x, ¥) coordinate system. The source term Sp ¢ in the direction normal to the interface is given
by

0z, h* 0

So.e= — d’ghafg + 97£

In the proposed approach the flux is estimated using a Harten-Lax-van Leer (HLL) Riemann

solver [17, 18]. The source term must be discretized in such a way that steady-state conditions

are satisfied. Therefore, the discretization of the source term is conditioned by the Riemann

solver used. However, the method presented here can be applied for any choice of Riemann
solver.

The HLL Riemann solver is based on the assumption of two discontinuities travelling at

speeds A~ and A* from the location of the initial discontinuity between the initial states Up

and Ug. The solution between the two waves /2~ and A' is approximated by a constant state

(10)
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Ui,j
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Figure 2. Definition sketch for the HLL Riemann solver. The solution is approximated by a
region of constant state U; ; separated from the left and right states of the Riemann problem

by two discontinuities moving at speeds 2~ and A%.

(Figure 2). Applying the Rankine—Hugoniot conditions across these discontinuities leads to
the following estimate:

1 \ . _
(¢F),;,; = ﬁ[“(ﬁLF(UL) — 2~ ¢rF(Ur) + 27 A" (¢rUr — ¢ UL)] (11)
The wave celerities are estimated as in Reference [22]
AT = min(uL — CL,UR — CR,O)
(12)

AT =max(up + cr,ur + cg,0)

the min and max operators allowing the validity of Equation (11) to be extended to super-

critical conditions. Also note that Equation (12) is used only for the determination of the first

two components of F, the third component of F being calculated using the velocity u« (that is,

the propagation speed of the contact discontinuity in v) so as to minimize numerical diffusion
A~ =min(u; ;,0)

' (13)

)L+ = max(u,»,j, 0)

In order to ensure equilibrium under steady state conditions the expressions of U and S, ¢ are
slightly modified by introducing the elevation z of the free-surface

z=zy+h (14)

where z, is the bottom elevation. Following the idea developed in Reference [13], U is
redefined as

z
U= | hu, (15)
hu,
and the source term Sy ¢ is redefined as follows:
_ 0 9,200
So,e = _g¢h6§(z —-h)+ 2h FE
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209

0z
= _g¢h8 + Eafg(d’hz (16)

Using 0z/0¢ instead of 0z,/0¢ in the expression of Sy : prevents spurious source term from
arising when the water is at rest on an irregular topography. Details about these modifications
are given in Sections 3.2 and 3.3.

3.2. Computation of the mass flux

The mass flux is obtained from the first component of the vector equation (11)

(Phu)i; = —= {2 (Puh) = 27 (Puh)r + 77 2 [($2)r — ($2)L1} (17)

Equation (17) satisfies the equilibrium condition when ¢ is identical on both sides of the
interface. This is easily checked for the case of water at rest, where zp =zg and up =ugr =0.
If ¢ =r, a zero mass flux is obtained thanks to the modification (15) derived from the
arguments developed in References [23, 13]. Indeed, if the bottom level is not constant, using
h instead of z in Equation (17) yields a non-zero discharge at the interface because /. and
hr are different. Spurious oscillations appear in the free surface and propagate throughout
the entire calculation. Using z instead of / as a conserved variable in the continuity equation
allows this drawback to be eliminated. However, this modification is not sufficient in situations
where the porosity varies across the interface. Indeed, if zp =zg and uy =ug =0, inserting the
condition ¢ #¢r into Equation (17) yields a non-zero mass flux. A possible modification of
Equation (17) could be to multiply the difference zg — z by an average value ¢rr (to be
determined) of the porosity between the cells L and R

(Phu);,; = ﬁ[ﬁ(q&uhh — 27 (Quh)r + 272" (zr — z1)¢1r] (18)

However, this formulation is not satisfactory because it does not yield realistic steady-state
conditions when the discharge is non-zero in the presence of a porosity gradient. Consider
the following steady-state situation:

(19)
(phu)L = (Pphu)r = q

with ¢ #0. Steady-state continuity imposes that (¢hu);; should be equal to g. Substituting
this condition and Equation (19) into Equation (18) leads to the necessary condition

¢L#¢R}

Z1, = ZR (20)
Equation (20) is not physically acceptable because it does not allow the momentum equation
to be satisfied when g#0. In the case of a non-zero discharge the gradient in the momen-

tum flux ¢hu? should be balanced by a gradient in the hydrostatic pressure term ¢gh?/2.
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Consequently, z; and zg should be different. The following expression is proposed:

(B = P hy G+ )] e

where ¢rr is approximated as follows:

¢Lr = min(¢r, Pr) (22)

This estimate is based on the consideration that the mass exchange is driven by the narrower
of the two sections. It has the additional advantage that it accounts automatically for the fact
that water cannot flow into a region of zero porosity because in such a case the following
condition is automatically satisfied:

¢r =0 if min(¢r,pr)=0 (23)

3.3. Computation of the longitudinal momentum flux and source terms

The momentum flux in the direction ¢ is given by the second component of the vector
equation (11)

(dhi),; = ﬁ (o (pme + gqﬁhz)L — (i + %wﬂ)R

+A I (i — ($hu | (24)

The integral AS, : of the source term Sy : across the interface is written in the form

ASo.e= —g(Ph)ij(zr —21) + %[(fbhz)k — (k)] (25)

where (¢h); ; is estimated in such a way that the steady state conditions are satisfied for any
value of gq.

The estimate of (¢h);; is derived by writing the mass and momentum balance on the
control volume formed by the cells i and j. For the sake of simplicity the necessary condition
for the expression of (¢h), ; is derived for a flat bottom. In such a case the difference (zr —z1)
can be replaced with the difference (g — Ar) and Equation (25) becomes

ASpe= = g($h)i (e —ho) + SU(H ) — (dh7).] (26)
The estimate of (¢h),; must be such that the equilibrium condition over the cells i and j is

satisfied. Writing the discrete mass and momentum balance over the domain formed by the
cells i and j gives

2, 92\ 2, Y952 _
(thu + 5 )L (¢>hu + )RJFASO,f 0 27)
Substituting Equation (26) into Equation (27) leads to the following relationship:
(phu* ). — (phu )r — g(ph); j(hg — hL)=0 (28)
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Substituting Equation (19) into Equation (28) yields the equality

(uL — ur)q — g(¢h)i,j(hR —h)=0 (29)

Equation (29) is the momentum balance obtained using the discrete estimates (24) and (26) of
the flux and the source term, respectively. The expression of (¢h); ; is obtained by comparing
Equation (29) to the analytical momentum balance over the same control volume (represented
in Figure 3 for the case ¢ > ¢r). For the sake of clarity the section available to the flow on
each side of the interface has been lumped into a single region of width ¢w in the figure.
The momentum flux Map entering the control volume by the left-hand boundary [AB] of the
control volume is given by

Mg =quLwi ; (30)

The momentum flux Mcp leaving the control volume by the right-hand edge [CD] is
given by

Mcp = qurwi 3D
The pressure forces exerted on the edges [AB], [CD] and [EF] are given by
P _ ) h2
AB = Ed)L LWi,j
P o g h2
> = 5 Prlpwi, (32)

Pgr = %(qﬁL — Q)W
Balancing the momentum fluxes and the pressure forces yields
Mxg — Mcp + Pap — Pcp — Per =0 (33)

Substituting Equations (30)—(32) into Equation (33) and dividing by w; ; leads to

(uL —ur)g + %[(¢Lhi — Prhy) + (pr — PLIAE]=0 if ¢r=>¢r (34)
A
D (¢L7¢R) Wi,_/
W[‘/' E
oL Wij
¢RW,',/'
B C

Figure 3. Plan view sketch for momentum balance across an interface with different porosities
on the left- and right-hand sides (here for ¢ > ¢r).

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309-345
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A similar reasoning for the case ¢p < ¢ leads to the following relationship:

(uL —ur)q + 3 [(<]5Lh2 drhz) 4+ (oL — Pr)AR]1=0 if ¢ <¢r (35)

where ¢ denotes the steady-state unit discharge. Note that Equations (34) and (35) can be
rewritten in condensed form as

(i~ ur)g -+ S {(PLA? — duli) + [min(be, dr) — Bl
~[min(gr. $1) — prliiz} =0 (36)

Equation (29) is equivalent to Equation (36) only if

(Ph)ij(hr — ho) = 3{(¢rhg — pLhi ) — [min(¢pr, Pr) — pLIAT
+[min(¢r, pr) — ¢R]h } (37)

Equation (37) can be written as

WMWh_hh{uwwbwwb+wywww it 1> o8)
S (Y B C N s R
Equation (38) can be simplified into
(thw(ﬁR if ¢L=>dr
(ph):,; = (39)
(hkzwﬁm if ¢L<or
Equation (39) is rewritten as
(9h); =" mmin( gy ) (40)

From a practical point of view the source term over cell i in Equation (6) is computed as
the sum of the contributions of the source terms across each cell interface. Each component
of this sum is treated in an upwind fashion [10]. This results in the following modified form
of Equation (6), adapted to cell i and cell j on the left- and right-hand side of the interface,
respectively,

Wi j

U:’l+1 :U;' Z Pl] |: (¢F)n+l/2 + (S )n+1/2:|

d’: JEN(i) @1

U;7+1 Un + = Z P” |:le(¢17)11+1/2 +(S )n+1/2:|
(»bj JEN(P)
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where the source term (S;)/ "2

i 1s estimated as

-7 wi

n+1/2 i,j ;

(S "= pr— /T,-ASO’C (42)

where ASy : is computed according to Equations (25) and (40). Conversely, the contribution

of the bottom and porosity source term to the momentum equation in the cell j is given by
}v+ Wl"]'

(Sj)zjﬂ/zz W,T/ASO@“ (43)

3.4. Computation of the transverse momentum flux

The transverse momentum flux is given by the third component of the vector equation (11).
If the velocity at the interface is positive the momentum flux must be computed using the
value vp. Otherwise the value vg must be used. The following formula accounts for both
situations:

(Phuv), ;= (G +2 [(Puh)s,| L

+ ((:buh)i,j - \(d’”h)i,j\ R

5 (44)

3.5. Computation of the friction source term

The friction source term is discretized in the global coordinate system (x, y) using a time
splitting procedure. Treating the friction terms separately from the other terms leads to the
following system of coupled Ordinary Differential Equations (ODEs):

d(¢ph) _

a0 (45a)
d(phu,) 1 L oaun

. <K2h4/3 +Sx> (uy +uy) bghu, (45b)
d(phu 1
% - <K2h4/3 + Sy) (5 +u3)" > pghu, (45¢)

Substituting Equation (45a) into Equations (45b)—(45¢) and dividing by ¢/ leads to

du, 1

T (1(2}17/3 + sx) (u? + ui)l/zgux (46a)
du 1
T <K2h7/3 + Sy) (e + 1) Pgu, (46b)

The coupled Ordinary Differential Equations (46a)—(46b) are semi-discretized over each cell i
using the following explicit linearization that allows the coupling between u# and v to be

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309-345
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broken:

du, 1 2\n 5n1/2
dt - (th?m +sx) [(ux)i +(uy)i] gl (473)
du, 1 2n 21 12
ar (th;,7/3 +S,v) [(ux)[ + (uy)i] guy (47b)

Equations (47) have the following analytical solution:

2 n 2\ 1/2
£ = exp [_ ([(u», G oad e

th::ﬂ’}
i s (48)
wo)i + (uy)i
ui“ =exp [ <[( )th(’ﬂ’;) } —I—sy) gAl] u,

It is recalled that s, and s, accounts for an additional head loss due to urban singularities
(see Appendix B for the details of the derivation).

3.6. Stability constraint

The numerical scheme being explicit, it is subject to a stability constraint that yields a max-
imum permissible computational time step. The maximum permissible time step is such that
the sum of the areas of the domain of dependence of the interfaces of each given cell should
not exceed the area of this cell. This criterion has proved to preclude instabilities from
appearing even in the case of an overlap of the domains of dependence of the interfaces
when the flow is strongly divergent [24]. The area 4;; of the domain of dependence of an
interface (i, j) is bounded by the following quantity:

Ay <wiAemax { [y + @2 )] + e @y + 02 + e} (49)

where the quantity between accolades is an upper bound for the speed of the fastest charac-
teristic issued from the interface. The time step should be such that

Z Ai,jSAi for all i (50)
JENG)

A sufficient condition for Equation (50) to be satisfied given the relationship (49) is that the
maximum permissible time step Afn.x be defined as

4,
n n 1/2 n n n 1/2 n
S enwimax { (@2 + @2 )] + e [y + ey + e

Atyax = min
1

(51)
}

Note that in the case of a rectangular grid the condition reduces to the standard one-dimensio-
nal Courant-Friedrichs—Lewy condition that the sum of the Courant numbers in each direction
of space should not exceed unity.
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4. COMPUTATIONAL EXAMPLES

Two types of computational examples are provided in the present section. The first type
of example consists of analytical test cases where the quality of the numerical solution is
assessed via a comparison with analytical or semi-analytical solutions. Such tests are described
in Sections 4.1-4.3. The analytical test cases presented in Sections 4.1-4.3 are derived from
classical problems encountered in the shallow water literature but differ from these in that
a variable porosity is introduced into the equations. Sections 4.1 and 4.2 deal with one-
dimensional problems. Section 4.3 deals with a two-dimensional problem. The second type
of example allows the validity of the modified shallow water equations to be assessed by
comparing the model results with experimental data. This is the subject of Section 4.4.

4.1. One-dimensional dambreak with variable porosity

The first computational example consists of a one-dimensional dambreak simulation over a
flat bottom with a porosity varying from 0 at the left-hand boundary of the domain to 1 at
the right-hand boundary. The parameters of the test case are given in Table I. Note that under
the assumption of a one-dimensional behaviour and a linearly varying porosity Equation (1)
becomes

0 0
S(xU) + £ (pxF) =S (52)
where ¢x=d¢/dx is a constant. The momentum source term S, , reduces to
2
S (53)

Dividing Equations (52)—(53) by ¢, leads to the expression of the classical shallow water
equations in cylindrical coordinates, where x now plays the role of the radial coordinate.
The one-dimensional problem is therefore equivalent to a circular dambreak problem with
a uniform porosity. The radius of the dam is equal to xy and the water depths inside and
outside the circular region are given by A and /g g, respectively. Figures 4-9 compare the
numerical solution of the variable porosity problem to the reference solution obtained solving
the circular dambreak problem with a uniform porosity. The circular dambreak problem used
a reference solution is solved over a refined grid of cell width Ax =10~*m. The convergence
of the reference solution was checked by carrying out simulations on grids with a decreasing

Table I. Parameters of the one-dimensional dambreak test case with variable porosity.

Symbol Meaning Value

g Gravitational acceleration 9.81 m?/s

ho.L Initial water depth on the left-hand side of the dam 10m

ho,r Initial water depth on the right-hand side of the dam Im

L Length of the domain 100m

X0 Location of the dam 50m

Ax Cell size Im, 0.1 m, 0.0l m
O Radial derivative of the porosity 0.1/m
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Figure 4. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at t =4s (left) and  =10s (right) for a cell width Ax=1m and a
computational time step At =2.2 x 1072s.

cell width. No significant difference being detected between the solutions obtained for cell
widths Ax =103 and 10~*m, the solution for Ax=10"*m is considered as converged.

Figure 4 shows the profiles obtained using the second-order MUSCL reconstruction at t =4
and 10s for a cell width Ax=1m and a time step Az=2.2 x 1072 s that corresponds to the
maximum permissible time step. Figure 5 shows the profiles obtained for the same cell size
and a time step Ar=10"3s. Figures 6 and 7 represent the same profiles as do Figures 3
and 4, respectively, with both Ax and At divided by 10. Figures 8 and 9 present the results
for a cell size and time step 100 times as small as in Figures 4 and 5. The numerical solution
can be seen to converge to the semi-analytical solution when both the cell size and time step
are reduced.
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Figure 5. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at ¢t =4 s (left) and ¢ =10s (right) for a cell width Ax=1m and a
computational time step Ar=10""s.

4.2. One-dimensional dambreak across a porosity discontinuity

The second computational example consists of a one-dimensional dambreak simulation across
a porosity discontinuity. In this test the porosity is equal to unity on the upstream side of the
dam and is smaller on the downstream side of the dam. The parameters of the test case are
given in Table II. The discontinuity in the value of the porosity at xy leads to a reduction in
the exchange section between the upstream and downstream sides. Therefore, the structure of
the solution of this problem is different from that of the classical dambreak problem. The part
of the solution located to the right of the discontinuity has the same structure as the solution
of the classical dambreak problem, where a region of constant state is connected to the right
state of the Riemann problem by a shock wave and to the location of the initial discontinuity
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Figure 6. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at t=4s (left) and t+=10s (right) for a cell width Ax=0.Im
and a time step Ar=2.2 x 107 3s.

by a rarefaction wave. In contrast with the classical dambreak problem, the rarefaction wave
does not spread on the left-hand side of the discontinuity because the porosity is larger
there, leading to a reduced flow velocity. The region located immediately to the left of the
discontinuity is therefore a region of constant state, connected to the left state of the Riemann
problem by a rarefaction wave travelling to the left (Figure 10). The values U; and U, in
the regions of constant state can be determined by solving the following system of equations:

up + 2(gh)"? = uy + 2(gh1)"? (54a)
¢Lh1u1 = ¢thud (54b)
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Figure 7. One-dimensional dambreak problem with variable porosity. Reference
and numerical solutions at t=4s (left) and r=10s (right) for a cell width
Ax=0.1m and a time step Ar=10"*s.

ou (hut + 513) = dn (hais + 503
ug + 2(gha)"* = + 2(ghy)'?
ug — (gha)'"* =0
(hy — hr)s = hyup — hrug

Pyuns = hy? + %(h% 1)

325

(54c¢)

(54d)
(54e)
(541)

(54g)
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Figure 8. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at t =4s (left) and t=10s (right) for a cell width Ax=0.01m
and a time step Ar=2.2 x 107*s.

where s is the propagation speed of the shock, and %; and u; denote the water depth and
the velocity, respectively, on the right-hand side of the porosity discontinuity. Equation (54a)
expresses the invariance of the quantity u -+ 2(gh)'? across the rarefaction wave heading to
the left. Equations (54b)—(54c) express mass and momentum conservation across the porosity
discontinuity. Equation (54d) expresses the invariance of the quantity u 4 2(gh)"? across the
rarefaction wave issued from the porosity discontinuity and Equation (54e) states critical con-
ditions at the discontinuity. Equations (54f)—(54g) express mass and momentum conservation
across the shock. Solving Equations (54a)—(54g) for hy, uy, hy, uy, hy, uy and s allows the
solution to be determined uniquely. In the present case the solution was obtained using a
Newton—Raphson procedure. Figure 11 gives a comparison of the numerical and analytical
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Figure 9. One-dimensional dambreak problem with variable porosity. Reference
and numerical solutions at t=4s (left) and #=10s (right) for a cell width
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profiles for a cell width Ax=1m and computational time steps Ar=1073 and 2.7 x 10~*s.
The latter value of the time step corresponds to the maximum permissible value allowed by
the stability constraint. Figure 12 compares the analytical solution and the numerical solution
obtained using a cell width Ax=0.1m and time steps Af=10"* and 2.7 x 10~*s. As in the
previous test, refining the mesh does not yield any significant improvement in the quality of
the solution. In both cases a strong numerical diffusion appears across both the porosity dis-
continuity and the rarefaction wave, and both the unit discharge and the flow velocity appear
to be slightly overestimated. Nevertheless, the propagation speeds of the various waves are

computed correctly.
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Table II. Parameters of the one-dimensional dambreak test case with porosity discontinuity.

Symbol Meaning Value

g Gravitational acceleration 9.81m?/s
ho,L Initial water depth on the left-hand side of the dam 10m
ho,r Initial water depth on the right-hand side of the dam Im

L Length of the domain 100 m
X0 Location of the dam 50m
Ax Cell size 1m, 0.1 m
oL Porosity on the left-hand side of the dam 1

dr Porosity on the right-hand side of the dam 0.5 and 0.1

UL Ur

X

Figure 10. Structure of the analytical solution for the dambreak problem across a porosity discontinuity.

4.3. Two-dimensional dambreak with variable porosity

The third test case is a circular dambreak simulation where the porosity is variable in space.
The porosity field is given by

¢max

max(r, rg)

P(x, y) =

: (55)

"=+ (= oy ?
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Figure 11. Dambreak problem across a porosity discontinuity. Results computed using a
MUSCL reconstruction at t=4s for a cell width Ax=1m and a time step Ar=10"3s
(left) and Ar=2.7 x 1072 (right).

where (xp, yo) are the coordinates of the centre of the dam. It is easy to check that
substituting Equation (55) into the cylindrical version of Equation (1) leads to the classical
one-dimensional shallow water equations. Therefore, the circular dambreak problem written
in cylindrical coordinates with a porosity proportional to the inverse of the radial coordinate
is equivalent to the one-dimensional dambreak problem with a constant porosity. The one-
dimensional dambreak problem has an analytical solution [25]. The parameters of the test case
are given in Table III. Figure 13 shows a perspective view of the computed water depths at
t=4s. Figure 14 gives a comparison between the numerical and analytical solutions at ¢t =4s,
that is, shortly before the rarefaction wave reaches the centre of the dam, for a I1m x 1m
and a 0.25m x 0.25m grid. The cross-sections plotted in Figure 14 is drawn along the main

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309-345



330 V. GUINOT AND S. SOARES-FRAZAO

10 - 10 -
—— Analytical —— Analytical
+ Numerical + Numerical
£ E
= <
0 - 0 '
0 100 0 100
x (m) X (m)
10 1 — Analytical o Analytical
"
+ Numerical + Numerical
Q2 Q
£ £
= S5
0 ot " 0 Juaut® Hr
0 100 0 100
x (m) X (m)
50 - . 504
—— Analytical —— Analytical
+ Numerical Numerical
+
o Q
I~ [aV)
c S
= =1
c <
0 W . 0 b f "
0 100 0 100
x (m) X (m)

Figure 12. Dambreak problem across a porosity discontinuity. Results computed using a
MUSCL reconstruction at =4s for a cell width Ax=0.1m and a time step Ar=10""*s
(left) and Ar=2.7 x 10735 (right).

direction of the grid. The differences between the profiles drawn along the grid diagonals and
the main grid directions were found to be small. The behaviour of the numerical solution can
be seen to converge to the analytical solution.

4.4. Toce test case

The purpose of this test case is to demonstrate the usefulness and the validity of the porous
approach for the large scale modelling of floods in the presence of urbanized regions. The
present subsection aims to show that a refined two-dimensional model may advantageously be
replaced with a larger-scale model, based on a much coarser grid, where the urbanized area is
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Table III. Parameters of the circular dambreak test case with variable.

Symbol Meaning Value

g Gravitational acceleration 9.81m?/s
ho,1. Initial water depth on the left-hand side of the dam 10m
ho,r Initial water depth on the right-hand side of the dam Im

L Dimensions of the domain 200 m

7o Radius of the dam 50m

X0 x-coordinate of the centre of the dam 100 m
0 y-coordinate of the centre of the dam 100 m
Ax, Ay Cell size in the x- and y-directions Im, 0.25m
Dmax Maximum value of the porosity in the domain 1

Figure 13. Circular dambreak problem with variable porosity. Perspective view
of the computed water depth at t =4s.

represented using a reduced porosity. The test case was initially defined in the framework of
the IMPACT European project [1]. It consists of experiments performed using a scale model
of the Italian Toce valley at CESI (Italy). The model, the plan shape of which is roughly
trapezoidal, is 7m long and 3.5-5m wide depending on the location. During the IMPACT
experiments, square blocks were implemented in the scale model. Two configurations were
tested during the project: aligned and staggered. The aligned configuration (Figure 15) is
chosen for the present example because it is the least favourable configuration for a represen-
tation using the porous approach. Indeed, the presence of preferential flowpaths induced by
the aligned blocks should be expected to be very difficult to represent using a porosity that
reflects only a statistical property of the urban area. Two models were built. In the first model
the grid is refined so as to provide a detailed discretization of the model geometry between the
blocks (see detailed views of the computational grids in Figure 16). The equations solved in
this model are the classical two-dimensional equations without porosity. The blocks are repre-
sented by impermeable boundaries. The second model uses a much coarser grid and solves the
modified equations with porosity. In this model the rectangular area occupied by the blocks
is characterized by a porosity smaller than unity. The values adopted for the porosity in this
zone is the fraction of the cross-section available to the flow (that is, 4/9). The value of the
Strickler coefficient was calibrated to be 60 all over the model. An additional head loss due
to the singularities was incorporated in the urban area. The formulation retained is detailed
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Figure 14. Circular dambreak problem with variable porosity. Analytical and
numerical solutions obtained using a MUSCL reconstruction at t =4s for a cell
width Ax=1m (left) and Ax=0.25m (right).

in Appendix B. The classical shallow water model and the model with porosity count 12 122
and 3226 cells, respectively. The numerical experiment consisted in simulating the effect of
an input hydrograph used in one of the IMPACT experiments (Figure 17) at the upstream
boundary of the model and comparing the simulation results given by both models. Figure 18
shows the free surface elevations and the unit discharges computed by the porosity model
at t=20s. Two straight lines are defined, along which profiles of the computed free surface
elevations are drawn. Profile 1 is located in the middle of one of the ‘streets’ between the
blocks. Profile 2 is aligned with the centres of the square blocks. Figure 19 gives a compar-
ison of the computed free surface elevations along these two profiles. Quite expectedly, the
free-surface elevation computed by the refined and coarse models are different in the region
occupied by the blocks (i.e. the part of the profile located between the points A and B). In
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Figure 15. Topography of the valley for the Toce test case. Locations of the square blocks
in the aligned configuration. Contour line spacing 0.005 m.
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Figure 16. Detailed view of the mesh in the aligned configuration for the classical shallow

water model (left) and for the shallow water model with porosity (right). Note that the

coarse mesh in the model with porosity follows the contour of the urbanized zone (bold
grey line in the figure on the right-hand side).

particular, the oscillations of the free surface along profiles 1 and 2 in the classical shallow
water model are due to the presence of the blocks that obstruct the flow and cause local
perturbations in the water level. Obviously, such details cannot be represented in the porosity
model. Similarly, the local depression on the downstream side of the zone occupied by the
blocks is due to local factors that cannot be represented by the model with porosity.

It is stressed that this should not be regarded as a failure of the porosity model, but as an
inevitable consequence of the concept of porosity that is intended to reflect the macroscopic
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Figure 18. Plan view of the computed free surface elevations and unit discharges at t =20s
using the large scale model with porosity. Contour line spacing 0.01 m.
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Figure 19. Longitudinal profiles of the free surface elevations computed at ¢ =20 s using the
refined model (solid line) and the coarse model with porosity (dots) along profiles 1 (left)
and 2 (right). The error bars represent the measuring precision of the pressure gauges.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309-345



SHALLOW WATER MODELS WITH POROSITY 335

properties of the geometry. In contrast, the slope of the free surface, and therefore the head
gradient, can be observed to be similar in both models, which indicates that the porosity
concept is a viable alternative to the classical shallow water equations for the determination
of the average flow characteristics in the urbanized area.

The comparison between the computed and measured water levels shows that the results of
both the classical shallow water model and the porosity model match the measurements. The
water levels seem to be overestimated by both models in the downstream part of the urban
area along profile 1 and slightly underestimated by both models in the central part of the
area in profile 2. It should be remembered however that the measurements consist of recorded
bottom pressure and that multiple wave reflections and strongly curved flowpaths may cause
the hydrostatic assumption not to be entirely valid in the close neighbourhood of the blocks.
A point in favour of the shallow water model with porosity is that its results do not depart
further from the experimental data than do the classical shallow water model results.

It should be noted that the 60s simulation required 41s CPU for the coarse model and
540s CPU for the refined model on the same Pentium 4 processor. This example shows that
large scale shallow water models with porosity may usefully contribute to the calculation of
far-field flow conditions that can be used as boundary conditions for more refined flow models
over urban areas.

5. CONCLUDING REMARKS

A modified Harten-Lax-van Leer (HLL) solver has been proposed for the solution of modi-
fied two-dimensional shallow water equations with porosity. When the porosity is uniform the
modified equations are equivalent to the classical two-dimensional shallow water equations.
The structure of the solution of the modified equations (number of waves and their propaga-
tion celerities, thus the stability criterion) is identical to that of the classical shallow water
equations.

When the porosity is variable in space, an additional source term appears in the momentum
equations and the classical formulation of the HLLC Riemann solver does not allow equi-
librium and steady-state conditions to be satisfied. The modified solver allows steady-state
solutions to be restored and is shown to perform well against analytical solutions in one
and two dimensions of space with variable porosity. The comparison with the refined flow
model of the Toce valley indicates that the concept of porosity is a viable option for the
representation of the influence of urban areas in large-scale flow models. The authors admit
not having expected such a good behaviour from the porosity model for the Toce application
because of the small number of blocks (4 x 5) involved in the test. The concept of porosity,
that is supposed to express a statistical property of the urban medium, was not expected to
be meaningful at such a small scale.

The porosity can be easily determined a priori from maps or aerial photographs because it
is a direct geometrical property of the medium. In the urban area the head loss is triggered to a
small extent by bottom and wall friction and to a large extent by the multiple wave reflections
against the urban structures and the local changes in the flow regime. A macroscopic head
loss formulation based on the classical head loss formulae of hydraulics is proposed in the
present paper.
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In addition to the numerical treatment of the equations, future research and model validation
should focus on methods for the determination of head loss coefficients from the geometrical
characteristics of the urban zones. It also seems obvious that the fine tuning of such coefficients
in real-world applications will require the comparison with historical records, as is already
done for the determination of the Strickler coefficient in engineering studies with classical
shallow water models.

APPENDIX A: DERIVATION OF THE MODIFIED SHALLOW WATER EQUATIONS
AND THEIR DISCRETIZATION

The equations are derived by carrying out a mass and momentum balance over a rectangu-
lar volume df2 of horizontal and vertical dimensions ox and Jy, respectively. The deriva-
tion of the continuity and the x-momentum equations are examined in Sections A.l and
A.2, respectively. The y-momentum equation being derived exactly in the same way as
the x-momentum equation, devoting a separate subsection to its derivation is not necessary.
Section A.3 deals with the discretization of the equations in conservation form on unstructured
grids. In what follows, only the conservation part of the equations is dealt with.

A.1. The continuity equation

The continuity equation is derived first. The volume V' of water contained in the control
volume is given by

yo+0y  pxo+ox
V= / / $(x, )i dxdy (A1)
Yo X0

where (xg, yo) are the coordinates of the lower left corner of the control volume. The volume
fluxes Fy,w and Fy g across the western and eastern sides, respectively, are given by

Yo+oy
Faw = / (huus)(xo, ) dy
Yo (AZ)

Yo+dy
Fye = / (huy)xo + 6x, ) dy

Yo

The discharges Os and On across the southern and northern sides, respectively, are given by

Fus= [ " (), yo) d
" (A3)

X0+0x
Fux = / (dhiy)(x, yo + 0y) d

Xo
The continuity equation can be written as

ov

E:FM,W_FM,E + Fus — Fun (A4)
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Substituting Equations (A1)—(A3) into Equation (A4) gives

o [Yotoy protox Yo+dy Yo+dy
S e [ @t nd [ @+ dx ) d

Yo Xo Yo Yo

X0+0x X0+0x
- / (i, )(x, yo) dx + / (dhuty )5, o+ Sy) dx =0 (AS)

that can be rewritten as

Yooy pxo+ox 5 Yo+dy
[ gememdd+ [ 1@huen +ox ) - (hu)n ) dy

Yo X0 Y0

Xo+0x
+/ [(Phuy )(x, yo + 0y) — (Pphuy)(x, yo)]dx =0 (A6)
When both dx and oy tend to 0 the following limits hold:

0
(Ghi o + 8%, 1) = (Dhiee) o, 1) ——>0x < (Shuy)
(A7)
(B, ) o+ 89) = (Pt )5 30) 00 5 ()

and the integrals become equivalent to the product of the point values and the width of the
integration interval. Therefore Equation (A6) becomes

0 0 0
5x5ya(¢h)+ 5y5xa(d)hux)+ 5x5ya(¢huy)—0 (A8)
Dividing by dxdy yields the continuity equation

0 0 0
E(dbh) + a(q’)hux) + a((i)huy) =0 (A9)

A.2. The momentum equation

The momentum equation is derived in the x-direction only. The y-momentum equation, that
can be derived following exactly the same reasoning, will not be detailed here. The total
x-momentum in the control volume is given by

yo+0y  pxo+ox
Mx:p/ / (duh)(x, y)dx dy (A10)
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The x-momentum fluxes across the various edges of the control volume are given by

Yo+0y
Fuw=p / (du2h)(xo, ¥) dy

Yo

Yo+oy
Fue= ,0/ (¢”§h)(x0 + ox, y)dy
Yo

‘ (A1)
X0+0x
Fys=p / (bt h)(x, o) dx

X0+0x
Fyn= p/ (pusu,h)(x, yo + oy)dx
X0

The external forces exerted in the x-direction on the water stored in the control volume are
the following. The pressure force Py is exerted from left to right on the western side of the
control volume. It is given by

Y, Yo+dy
Pw=55 [ (@), v)dy (A12)
Yo

The pressure force P exerted from right to left on the eastern side of the control volume is
given by
og Yo+3y )
Pe=— L0 [ @k + 0%, )y (A13)
Yo

The reaction W, exerted by the walls on the water body owing to the variation of the porosity
in the x-direction is given by (see e.g. Reference [26] for a detailed proof)

Yo+0y  pxo+0x
Wx— / ad)hzdxd (A14)

The x-reaction B, of the bottom to the Weight of the water body per unit surface is the product
of the local bottom pressure, the bottom slope in the x-direction and the porosity (because
the reaction is exerted only at the points of the control volume occupied by the water).

Yo+0y  pxo+ox azb
B=-pg [ [ @b (A1)

The resistance R, due to friction is accounted for by a classical Strickler law. The friction
force is exerted only at the points occupied by the water

pgh/yo+5y/xo+6x (u —l—u )1/2
Yo X0

K2h4/3 ¢MA] (X, y) d'x dy (A16)
The momentum balance can be written as

ou,
ot

=Fyw—Fue+Fus—Fun+Pw—Pe+ W, +B;+R, (A17)
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It is first noted that in the limit of vanishing dx and Jy, the differences between the fluxes
and the forces at opposite edges of the control volume can be simplified as follows:

Yo+dy 0 5
Fuw—Fus ~ P/ - a((,buxh)&cdy

ox—0 Yo
Xo+0x 0
- ~ - = Al8
Fys — Fux 50 p/xo ax((l’)lztxuyh)cﬁ/dx ( )
B Py Yo+dy B i X
Pw — Pg ) i ax((]bh )ox dy

Substituting Equations (A14)—(A16) and Equation (A18) into Equation (A17) and dividing
by p leads to

0 Yo+0y  pxo+0x Yo+0y 0
SL [ wunenae s [ S @ened
X0 hd X

Yo 0

X0+0x a 5 g Yo+0y a 5 5
w7 G emamovds+ [ Sionora

Yo

g yo+(5y/x0+(5x a¢ 5 B /}rg+(5y/x0+(5x azb
_2/” L] B R COCRF=L L

Xo

yo+oy  pxo+ox
Yo Xo

Observing that the integral of a function tends to the product of the function point value and
the size of the domain when the size of the domain tends to zero, (A19) is rewritten in the
limit of ox, dy and o¢ tending to zero

(u? + u?)'?
W(f)ux (x, y)dxdy (A19)

0 0 ) 0 g o )
5x5ya(d>uxh) + 5x5ya(¢uxh) + 5x5y@(¢uxuyh) + 5x5y§ a((f)h )

0 0z (2 +u?)'?
= 5x5y%a—i)h2 - 5x5yg¢ha—; — 5x5yghK27h4§3¢ux (A20)
Dividing Equation (A20) by dxdy yields
0 0 0
S () + o (Guho+ S0 ) + 5 (Guayh)
gog Oz (uy + )"
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A similar reasoning leads to the following equation for the y-momentum:

o ¢ o
5 (Bush) + (bt + 2 ($02h+ S902)

2 2\1/2
aﬁ ¢h%_ gty (A22)

_9
) K2h4/3

The vector form of Equations (A9), (A21) and (A22) is Equation (1)
0 0 0
E((ZSU) + a((ﬁF) + @((PG) =S

with the definitions (2)—(4) for U, F, G and S.

A.3. Discretization and numerical solution

Equation (Al) is discretized using a finite volume formalism on unstructured grids. The
continuity equation is discretized as

At X n y
RN (LR VR U (A23)
i1i jeN(i

where A} is the average value of & over the cell i at the time level n, 4; is the area of the cell
i, (hux)”H/ % and (kuy)”“/ ? are the average value of the x- and y-mass fluxes, respectively, at
the 1nterface (i, )) between the time levels n and n+ 1, N(i) is the set of neighbour cells of
the cell i, nfvj) and nfi) are the x- and y-components of the normal unit vector (positive from i
to j) to the interface (i, j), w;; is the width of the interface (i, j), and At is the computational

time step. The quantity (qﬁhux)"H/ 2 (x) + ((bhuy)"ﬂ/ 2nfj) represents the scalar product of the

unit discharge and the normal umt vector that is, the mass flux in the normal direction to
the interface. Equation (A23) can be rewritten as

W =

B =R e S (Phu) Pwy (A24)

¢ Al JEN()

where u is the velocity in the direction normal to the interface. This velocity is computed as in
Equations (27)—(29) by solving a Riemann problem in the direction normal to the interface.
The x- and y-momentum equation are discretized as follows. Solving the Riemann problem
in the direction normal to the interface (i, j) yields the momentum fluxes F; and Fy in the
¢- and -directions, respectively. Such fluxes are defined as

Fe=(ghe + 30 j/

Fl// — (¢huv)n+l/2

(A25)

where v is the velocity in the direction tangent to the interface. The fluxes are computed using
Equations (30) and (43). The fluxes F; and F, at the interface (7, j) yield increases (Age ;)i ;

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309-345



SHALLOW WATER MODELS WITH POROSITY 341

and (Agqy;);; in the ¢- and y-momentum in the cell i over a time step At
(Age:),j = —Few; At
< J S J (A26)
(Agy.i)ij = —Fyw; ;At

The increases (Age;);,; and (Agqy;);; correspond to momentum increases (Ag.;);; and
(Agy,i)i,; in the x- and y-directions, respectively

(AQx l)lj - (Aqg I)ljn - (Aql/u)ljn

o (A27)
(Aqy l)l j— (Aqg 1)1 ]n + (Aql/u)z ,l/l[j
Substituting Equation (A26) into Equation (A27) leads to
(Agsi)ij = —[Fenl) — Fynllw; At
(A28)

(Agy.)ij= [Fl/,n(x) + an(v)]w,jAt

The total increase in the x- and y-momentum in the cell 7 is obtained by summing up the
individual contributions of all the edges (7, j) of the cell i

Agei= Y (Aqyi)ij=— > [F: ”(x) Fw”(V)]Wi,jAt

JEN(D) JEN(@)

Agyi= Y (Agyi)ij=— > [Fwnlj —l—Fcn ]W,jAt

JEN(I) JEN(I)

(A29)

By definition, Ag,; and Ag,,; also satisfy the following equalities:
Aqx,i = [(¢hux)?+l - (d)hux)z"l]Ai

Agy,i = [(huy i+ — (dhuy )14;
Substituting Equation (A30) into (A29) and rearranging yields

(A30)

At
1 > [Féng,x) Fw"(y)] Wi, j
i jEN(i)

n At X
(P = ()t = 2 52 [Pyl + Fenl

(Phu )™ = (Phuy)) —
(A31)

Dividing by ¢; leads to

(hu )i = (hu )} —

At {
Fn™) — F n(v)} Wi
Pid; jgv:(i) S v b

At ) )
d)iAijG%:(i) [Fl//niff * Féni’i' } Wij

Given Equation (A25), Equations (A24) and (A32) can be written in vector form as

(A32)

(huy ) = (huy )} —

Ut =1y - ¢ A > Pii(¢F) i, (A33)
i JEN(i)

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309-345



342 V. GUINOT AND S. SOARES-FRAZAO

where U, F and P are defined as

h hu 1 0 0
U= |hu |, F= [ +gi?)2|, P,=10 ) —n?) (A34)
hu, huw 0 nﬁf}’ ”1(;);)

APPENDIX B: INTRODUCTION OF MACROSCOPIC HEAD LOSS FORMULATIONS
IN URBANIZED AREAS

The objective of the present Appendix is to propose a formulation for the friction source term
introduced in Equation (4), recalled here

(uf +u3)"?

Sf,x = _¢gh K2hA3 Uy — (i)ghs‘c(u)zc + ui)l/zux
Spy= —qﬁgthy — pghs,(u; +u3) Pu,

where K is Strickler’s friction coefficient, / is the water depth, Sy, and S, , are the slopes
of the energy line in the x- and y-directions, respectively, s, and s, are head loss coefficients
accounting for the singular head losses due to the urban singularities in the x- and y-directions,
respectively, u, and u, are the x- and y-flow velocities and ¢ is the porosity. The first term
on the right-hand side of Equations (B1) represents the classical head loss due to friction
against the bottom and walls under the wide channel approximation (i.e. the assumption that
the water depth is small compared to the channel width, therefore leading to the equivalence
between the hydraulic radius and the water depth).

Note that it would have been possible to propose a formulation accounting for the head
loss via a single, equivalent Strickler (or Manning, or Chezy) coefficient. Such a formulation
however is not felt appropriate because in classical Strickler-, Manning- or Chezy-like for-
mulations, friction is assumed to result from the turbulent shear stress within the boundary
layer at the bottom and walls and therefore be proportional to the wetted perimeter (hence the
presence of the hydraulic radius in Strickler’s, Manning’s and Chezy’s formulae). In contrast,
the head loss resulting from a singularity is assumed to be identical over the entire flow cross-
section and should therefore simply be proportional to the square of the velocities involved,
without any influence of the hydraulic radius. This is for instance the case of Borda-like
formulae that express the head loss across a sudden change in the flow cross-sectional area.
Attempting to account for such head losses via an equivalent Strickler coefficient would make
the equivalent Strickler coefficient depend on the hydraulic radius (here, the water depth),
which is not the desired behaviour for such a coefficient. This is why the formulation (B1) is
proposed instead, where s, and s, can be computed from the local characteristics of the flow
and urban geometry.

In the application to the Toce test case s, and s, were determined using Borda’s formula.
The impinging flood wave travelling roughly in a direction parallel to the streets, the flow
pattern can be viewed as occurring in separate, parallel channels, the cross-sections of which
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[ I A

Figure B1. Representation of the urban flow pattern using parallel channels.

are subject to a periodic sudden widening and narrowing (Figure B1). The head loss AH,,
is given by Borda’s formula [27]

2 2
up —u;

AH, =
29

(B2)

where u; and u, are the velocities in the narrow and wide sections, respectively. Conservation
of mass imposes

u1h1w1 :u2h2w2 (B3)
where /; and 4, are the water depths in the narrow and wide sections, respectively, and w,
and w, are the widths of the narrow and wide sections, respectively. Since no distinction is

possible between /; and /4, in the porosity model, both are taken equal to the water depth 4.
Equation (B3) is then simplified into

Uiw1 = uUywp (B4)
Substituting Equation (B4) into Equation (B2) and rearranging gives

2/ .2
wy/wi —1
— 5.

AH, =

(B5)

In the Toce application u, was taken equal to the norm of the average flow velocity, which
corresponds to the following modification for (B5):

27,2
_wmywi—1 4 2
AH, = Ty (uy +uy) (B6)

The head loss AH, across a sudden narrowing is given by [27]

2
A, [(1_1) L
m 9
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where m is the so-called contraction coefficient, a recommended value for which is 0.62 [27].
Substituting Equation (B4) into Equation (B7) leads to

1 2 w2 1 2 1 1w?
AH, = — 1 | 2272 o — 1 AT 2 BS
<m > +9 w? 2g <m ) +9 w2 2g uy +uy) (B8)

The sudden widening and narrowing being periodic in space, the slope of the energy line in
the direction longitudinal to the flow is given by

(B9)

AH, + AH, _ ( 1 )2 N 10 | w3 up 41
m

el | 22 XY
L 9 | wi 2gL
where L is the spatial period of the widening and narrowing. The slope of the energy line

in the x- and y-directions is obtained by projection onto the x- and y-axes according to the
velocity components. The final formula for s, and s, is

1 10| w2 1
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