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SUMMARY

Two-dimensional shallow water models with porosity appear as an interesting path for the large-scale
modelling of �oodplains with urbanized areas. The porosity accounts for the reduction in storage and
in the exchange sections due to the presence of buildings and other structures in the �oodplain. The
introduction of a porosity into the two-dimensional shallow water equations leads to modi�ed expressions
for the �uxes and source terms. An extra source term appears in the momentum equation. This paper
presents a discretization of the modi�ed �uxes using a modi�ed HLL Riemann solver on unstructured
grids. The source term arising from the gradients in the topography and in the porosity is treated in an
upwind fashion so as to enhance the stability of the solution. The Riemann solver is tested against new
analytical solutions with variable porosity. A new formulation is proposed for the macroscopic head
loss in urban areas. An application example is presented, where the large scale model with porosity
is compared to a re�ned �ow model containing obstacles that represent a schematic urban area. The
quality of the results illustrates the potential usefulness of porosity-based shallow water models for large
scale �oodplain simulations. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The recent interest for �ood simulation involving urbanized areas [1–6] has drawn the atten-
tion to the possible use of modi�ed shallow water models with porosity for large scale �ood
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simulations involving urbanized areas. The modi�ed shallow water equations with porosity
were �rst introduced in a simpli�ed form by De�na et al. [7] and later modi�ed by Hervouet
et al. [8]. In these modi�ed equations the porosity accounts for the presence of buildings,
structures, etc. that restrict the area available to water �ow. The in�uence of the porosity
is twofold in that it expresses a restriction in (i) the area locally available to mass and
momentum storage and (ii) the mass and momentum �uxes in both directions of space. Shal-
low water models with porosity have a direct interest to �oodplain and urban �ood modelling
in that they allow the in�uence of urbanized areas on the �ow to be represented using the
statistical properties of the urban network, without the need for a detailed description of the
urban geometry and the subsequent mesh re�nement. Shallow water models with porosity
may therefore be used for large-scale simulations of �ood-induced transients. The simula-
tion results may then be extracted and interpolated to provide boundary conditions to local,
re�ned �ow models where the details of the urban areas are represented. Another possible use
of such models is the simulation of �oodplain behaviour in the presence of urbanized areas
that condition partly the behaviour of the �oodplain, but where the details of the �ow within
the urban areas are not of direct interest.
The addition of a spatially varying porosity to the classical two-dimensional shallow water

equations yields additional source terms in the modi�ed equations. Although similar in struc-
ture to the source terms induced by the topographical gradient, the porosity-induced source
term triggers the need for a speci�c treatment of both the continuity and momentum equa-
tions. The treatment of topographical source terms within Godunov-type algorithms [9] for the
solution of the classical shallow water equations has been the subject of intensive research
(see e.g. References [10–16] and the references therein for the derivation and application of
the various approaches available). The present paper aims (i) to propose an approximate Rie-
mann solver for the modi�ed shallow water equations with porosity written in conservation
form on unstructured grids, coupled with an upwind treatment of source terms, (ii) to provide
new analytical and semi-analytical test cases that can be used as a basis for numerical method
assessment, and (iii) to provide a path for the determination of the macroscopic friction source
term that accounts for energy loss due to wave re�ections against obstacles in the porous
zone. Solving the equations in conservation form allows discontinuous solutions (such as
hydraulic jumps, bores, etc.) to be computed accurately. The proposed solver is based on the
Harten-Lax-van Leer (HLL) formalism. The �uxes and source terms are computed within the
same step and the source terms are treated in an upwind fashion so as to satisfy equilibrium
and steady-state conditions. Section 2 presents the governing equations. Section 3 details the
computation of the �uxes and source terms. Section 4 is devoted to computational examples.
Section 5 provides concluding remarks.

2. GOVERNING EQUATIONS

The shallow water equations with porosity (see Appendix A for a detailed derivation) can be
written in conservation form as

@
@t
(�U) +

@
@x
(�F) +

@
@y
(�G)=S (1)
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with

U=

⎡
⎢⎢⎣

h

hux

huy

⎤
⎥⎥⎦ ; F=

⎡
⎢⎢⎣

hux

hu2x + gh2=2

huxuy

⎤
⎥⎥⎦ ; G=

⎡
⎢⎢⎣

huy

huxuy

hu2y + gh2=2

⎤
⎥⎥⎦ ; S=

⎡
⎢⎢⎣

0

S0; x + Sf; x

S0; y + Sf;y

⎤
⎥⎥⎦ (2)

where g is the gravitational acceleration, h is the water depth, ux and uy are the x- and y-
velocities, respectively, S0; x and S0; y are the source terms arising from the bottom slopes and
porosity variations in the x- and y-directions, respectively, Sf; x and Sf;y are the source terms
arising from friction in the x- and y-directions, respectively, and � is the porosity. In what
follows, � is assumed to depend on the space coordinates only. The topographical source
terms are given by

S0; x =−�gh
@zb
@x
+ g

h2

2
@�
@x

S0; y =−�gh
@zb
@y
+ g

h2

2
@�
@y

(3)

where zb is the bottom elevation. The �rst term on the right-hand side of Equation (3)
accounts for variations in the bottom level. The resulting force on the water body is exerted
only on a fraction � of the total section of the control volume. The second term on the
right-hand side accounts for the longitudinal variations in the porosity. The friction terms
are assumed to result from (i) the bottom and wall shear stress, accounted for by Strickler’s
law, and (ii) the energy losses triggered by the �ow regime variations and the multiple
wave re�ections against obstacles in the porous zone, accounted for by a classical head loss
formulation

Sf; x =−�gh
(u2x + u2y)

1=2

K2h4=3
ux − �ghsx(u2x + u2y)

1=2ux

Sf;y =−�gh
(u2x + u2y)

1=2

K2h4=3
uy − �ghsy(u2x + u2y)

1=2uy

(4)

where K is the Strickler coe�cient (assumed to be isotropic in the present paper) and sx
and sy are head loss coe�cients accounting for the singular head losses due to the ur-
ban singularities in the x- and y-directions, respectively. The choice of this formulation is
justi�ed in Appendix B. Equation (1) can be rewritten in non-conservation (or characteristic)
form as

@
@t
(�U) +A

@
@x
(�U) + B

@
@y
(�U)=S (5)

It is easy to check that the matrices A and B are identical to the characteristic matrices of
the classical shallow water equations (i.e. the equations obtained by taking �=1). Therefore,
the structure and properties of the solution (number of waves and characteristic surfaces,
wave celerities and Riemann invariants) are identical to those of the solutions of the classical
shallow water equations. In what follows, Equation (1) is discretized using the �nite volume

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309–345



312 V. GUINOT AND S. SOARES-FRAZÃO
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Figure 1. De�nition sketch of the �nite volume discretization.

approach on unstructured grids (Figure 1)

Un+1
i =Un

i − �t
�iAi

∑
j∈N (i)

Pi; j(�F)
n+1=2
i; j wi; j +

�t
�i
Sn+1=2

i (6)

Un
i is the average value of U over the cell i at the time level n, Ai is the area of the cell i,

Fn+1=2
i; j is the average value of the �ux vector in the direction normal to the interface (i; j)
between the time levels n and n+ 1, N (i) is the set of neighbour cells of the cell i, Pi; j is
the matrix that accounts for the coordinate change from the global (x; y) coordinate system
attached to the interface, wi; j is the width of the interface (i; j), S

n+1=2
i is the average value

over the cell i between the time levels n and n+1 of the source term arising from the bottom
slope, porosity gradient and friction and �t is the computational time step. The components
of Sn+1=2

i are given by Equations (3) and (4). The matrix Pi; j expresses the rotation from the
global coordinate system (x; y) to the local coordinate system (�;  ) attached to the interface.
The rotation leaves the water depth invariant and acts on the x- and y-unit discharges. The
expression of Pi; j is therefore

Pi; j=

⎡
⎢⎢⎣
1 0 0

0 n(x)i; j −n(y)i; j

0 n(y)i; j n(x)i; j

⎤
⎥⎥⎦ (7)

where n(x)i; j and n(y)i; j are the x- and y-components, respectively, of the normal unit vector
between the cells i and j (oriented positive from i to j).
The �ux F at the interface is computed using the following procedure. In a �rst step, the

Riemann problem in the global coordinate system (x; y) is transformed to the local coordinate
system (�;  ) via a left-hand multiplication by P−1

i; j . In a second step, the local Riemann
problem is solved using a modi�ed Harten-Lax-van Leer (HLL) Riemann solver [17, 18]
described in Section 3. Eventually, the �ux is transformed back to the (x; y) coordinate
system, as in Equation (6).
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3. FLUX AND SOURCE TERM COMPUTATION

In what follows it is assumed that the �ow variables are available at the computational
time tn. The �ow variables may have been reconstructed using any higher-order technique (e.g.
a multidimensional or dimensionally split MUSCL reconstruction [19]). The reconstruction
allows Riemann problems to be de�ned at each interface (i; j) between two adjacent cells
i and j. The Riemann problem is an initial value problem where the initial value of U
is piecewise constant, equal to UL and UR on the left- and right-hand side of the interface,
respectively (see References [20, 21] for an overview of the various options available to de�ne
UL and UR from the reconstructed variables). In what follows the source term arising from
the bottom slope and the variations in the porosity is computed within the same step as the
�uxes. This step is described in Sections 3.1–3.3. The source term arising from friction is
accounted for in a separate step, described in Section 3.4.

3.1. Overview of the algorithm

The present subsection focuses on the discretization of the �ux F and the part of the source
term that arises from the bottom slope and the porosity gradient. As mentioned above the
friction source term is accounted for in a separate step. It is assumed in what follows that a
one-dimensional Riemann problem has been de�ned in the local coordinate system attached to
the interface as explained in the previous section. The equation to be solved in the direction
normal to the interface reduces to

@
@t
(�U) +

@
@�
(�F)=S0 (8)

with

U=

⎡
⎢⎢⎣

h

hu

hv

⎤
⎥⎥⎦ ; F=

⎡
⎢⎢⎣

hu

hu2 + gh2=2

huv

⎤
⎥⎥⎦ ; S0 =

⎡
⎢⎢⎣
0

S0; �

0

⎤
⎥⎥⎦ (9)

where u and v are the velocity components in the direction normal and tangent to the interface,
respectively, and should not be confused with the velocity components ux and uy in the original
(x; y) coordinate system. The source term S0; � in the direction normal to the interface is given
by

S0; �= − �gh
@zb
@�
+ g

h2

2
@�
@�

(10)

In the proposed approach the �ux is estimated using a Harten-Lax-van Leer (HLL) Riemann
solver [17, 18]. The source term must be discretized in such a way that steady-state conditions
are satis�ed. Therefore, the discretization of the source term is conditioned by the Riemann
solver used. However, the method presented here can be applied for any choice of Riemann
solver.
The HLL Riemann solver is based on the assumption of two discontinuities travelling at

speeds �− and �+ from the location of the initial discontinuity between the initial states UL
and UR. The solution between the two waves �− and �+ is approximated by a constant state
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Figure 2. De�nition sketch for the HLL Riemann solver. The solution is approximated by a
region of constant state Ui; j separated from the left and right states of the Riemann problem

by two discontinuities moving at speeds �− and �+.

(Figure 2). Applying the Rankine–Hugoniot conditions across these discontinuities leads to
the following estimate:

(�F)i; j ∼= 1
�+ − �− [�

+�LF(UL)− �−�RF(UR) + �−�+(�RUR − �LUL)] (11)

The wave celerities are estimated as in Reference [22]

�− =min(uL − cL; uR − cR ; 0)

�+ =max(uL + cL; uR + cR ; 0)
(12)

the min and max operators allowing the validity of Equation (11) to be extended to super-
critical conditions. Also note that Equation (12) is used only for the determination of the �rst
two components of F, the third component of F being calculated using the velocity u (that is,
the propagation speed of the contact discontinuity in v) so as to minimize numerical di�usion

�− =min(ui; j; 0)

�+ =max(ui; j; 0)
(13)

In order to ensure equilibrium under steady state conditions the expressions of U and S0; � are
slightly modi�ed by introducing the elevation z of the free-surface

z= zb + h (14)

where zb is the bottom elevation. Following the idea developed in Reference [13], U is
rede�ned as

U=

⎡
⎢⎢⎣

z

hux

huy

⎤
⎥⎥⎦ (15)

and the source term S0; � is rede�ned as follows:

S0; � =−g�h
@
@�
(z − h) +

g
2
h2

@�
@�
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=−g�h
@z
@�
+ g�h

@h
@�
+

g
2
h2

@�
@�

=−g�h
@z
@�
+

g
2

@
@�
(�h2) (16)

Using @z=@� instead of @zb=@� in the expression of S0; � prevents spurious source term from
arising when the water is at rest on an irregular topography. Details about these modi�cations
are given in Sections 3.2 and 3.3.

3.2. Computation of the mass �ux

The mass �ux is obtained from the �rst component of the vector equation (11)

(�hu)i; j ∼= 1
�+ − �− {�+(�uh)L − �−(�uh)R + �−�+[(�z)R − (�z)L]} (17)

Equation (17) satis�es the equilibrium condition when � is identical on both sides of the
interface. This is easily checked for the case of water at rest, where zL = zR and uL = uR =0.
If �L =�R, a zero mass �ux is obtained thanks to the modi�cation (15) derived from the
arguments developed in References [23, 13]. Indeed, if the bottom level is not constant, using
h instead of z in Equation (17) yields a non-zero discharge at the interface because hL and
hR are di�erent. Spurious oscillations appear in the free surface and propagate throughout
the entire calculation. Using z instead of h as a conserved variable in the continuity equation
allows this drawback to be eliminated. However, this modi�cation is not su�cient in situations
where the porosity varies across the interface. Indeed, if zL = zR and uL = uR =0, inserting the
condition �L �=�R into Equation (17) yields a non-zero mass �ux. A possible modi�cation of
Equation (17) could be to multiply the di�erence zR − zL by an average value �LR (to be
determined) of the porosity between the cells L and R

(�hu)i; j ∼= 1
�+ − �− [�

+(�uh)L − �−(�uh)R + �−�+(zR − zL)�LR] (18)

However, this formulation is not satisfactory because it does not yield realistic steady-state
conditions when the discharge is non-zero in the presence of a porosity gradient. Consider
the following steady-state situation:

�L �=�R

(�hu)L = (�hu)R = q

}
(19)

with q �=0. Steady-state continuity imposes that (�hu)i; j should be equal to q. Substituting
this condition and Equation (19) into Equation (18) leads to the necessary condition

zL = zR (20)

Equation (20) is not physically acceptable because it does not allow the momentum equation
to be satis�ed when q �=0. In the case of a non-zero discharge the gradient in the momen-
tum �ux �hu2 should be balanced by a gradient in the hydrostatic pressure term �gh2=2.
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Consequently, zL and zR should be di�erent. The following expression is proposed:

(�hu)i; j ∼= �LR
�+ − �− [�

+(uh)L − �−(uh)R + �−�+(zR − zL)] (21)

where �LR is approximated as follows:

�LR ∼= min(�L; �R) (22)

This estimate is based on the consideration that the mass exchange is driven by the narrower
of the two sections. It has the additional advantage that it accounts automatically for the fact
that water cannot �ow into a region of zero porosity because in such a case the following
condition is automatically satis�ed:

�LR =0 if min(�L; �R)=0 (23)

3.3. Computation of the longitudinal momentum �ux and source terms

The momentum �ux in the direction � is given by the second component of the vector
equation (11)

(�hu2)i; j ∼= 1
�+ − �−

{
�+
(
�hu2 +

g
2
�h2

)
L

− �−
(
�hu2 +

g
2
�h2

)
R

+�−�+[(�hu)R − (�hu)L]
}

(24)

The integral �S0; � of the source term S0; � across the interface is written in the form

�S0; �= − g(�h)i; j(zR − zL) +
g
2
[(�h2)R − (�h2)L] (25)

where (�h)i; j is estimated in such a way that the steady state conditions are satis�ed for any
value of q.
The estimate of (�h)i; j is derived by writing the mass and momentum balance on the

control volume formed by the cells i and j. For the sake of simplicity the necessary condition
for the expression of (�h)i; j is derived for a �at bottom. In such a case the di�erence (zR−zL)
can be replaced with the di�erence (hR − hL) and Equation (25) becomes

�S0; �= − g(�h)i; j(hR − hL) +
g
2
[(�h2)R − (�h2)L] (26)

The estimate of (�h)i; j must be such that the equilibrium condition over the cells i and j is
satis�ed. Writing the discrete mass and momentum balance over the domain formed by the
cells i and j gives (

�hu2 +
g
2
h2
)
L

−
(
�hu2 +

g
2
h2
)
R
+�S0; �=0 (27)

Substituting Equation (26) into Equation (27) leads to the following relationship:

(�hu2)L − (�hu2)R − g(�h)i; j(hR − hL)=0 (28)
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Substituting Equation (19) into Equation (28) yields the equality

(uL − uR)q − g(�h)i; j(hR − hL)=0 (29)

Equation (29) is the momentum balance obtained using the discrete estimates (24) and (26) of
the �ux and the source term, respectively. The expression of (�h)i; j is obtained by comparing
Equation (29) to the analytical momentum balance over the same control volume (represented
in Figure 3 for the case �L¿�R). For the sake of clarity the section available to the �ow on
each side of the interface has been lumped into a single region of width �w in the �gure.
The momentum �ux MAB entering the control volume by the left-hand boundary [AB] of the
control volume is given by

MAB = quLwi; j (30)

The momentum �ux MCD leaving the control volume by the right-hand edge [CD] is
given by

MCD = quRwi; j (31)

The pressure forces exerted on the edges [AB], [CD] and [EF] are given by

PAB =
g
2
�Lh2Lwi; j

PCD =
g
2
�Rh2Rwi; j

PEF =
g
2
(�L − �R)h2Lwi; j

(32)

Balancing the momentum �uxes and the pressure forces yields

MAB − MCD + PAB − PCD − PEF =0 (33)

Substituting Equations (30)–(32) into Equation (33) and dividing by wi; j leads to

(uL − uR)q+
g
2
[(�Lh2L − �Rh2R) + (�R − �L)h2L]=0 if �L¿�R (34)

A

B C 

D
E

wi,j φ L wi,j

φ 
Rwi,j 

(φ L–φ R) wi,j

Figure 3. Plan view sketch for momentum balance across an interface with di�erent porosities
on the left- and right-hand sides (here for �L¿�R).
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A similar reasoning for the case �L6�L leads to the following relationship:

(uL − uR)q+
g
2
[(�Lh2L − �Rh2R) + (�L − �R)h2R]=0 if �L6�R (35)

where q denotes the steady-state unit discharge. Note that Equations (34) and (35) can be
rewritten in condensed form as

(uL − uR)q+
g
2
{(�Lh2L − �Rh2R) + [min(�R ; �L)− �L]h2L

−[min(�R ; �L)− �R]h2R}=0 (36)

Equation (29) is equivalent to Equation (36) only if

(�h)i; j(hR − hL) = 1
2{(�Rh2R − �Lh2L)− [min(�L; �R)− �L]h2L

+[min(�L; �R)− �R]h2R} (37)

Equation (37) can be written as

(�h)i; j(hR − hL)=

{ 1
2 [(�Rh

2
R − �Lh2L) + (�L − �R)h2L] if �L¿�R

1
2 [(�Rh

2
R − �Lh2L) + (�L − �R)h2R] if �L6�R

(38)

Equation (38) can be simpli�ed into

(�h)i; j=

⎧⎪⎪⎨
⎪⎪⎩
(hR + hL)

2
�R if �L¿�R

(hR + hL)
2

�L if �L6�R

(39)

Equation (39) is rewritten as

(�h)i; j=
hL + hR
2

min(�L; �R) (40)

From a practical point of view the source term over cell i in Equation (6) is computed as
the sum of the contributions of the source terms across each cell interface. Each component
of this sum is treated in an upwind fashion [10]. This results in the following modi�ed form
of Equation (6), adapted to cell i and cell j on the left- and right-hand side of the interface,
respectively,

Un+1
i =Un

i − �t
�i

∑
j∈N (i)

Pi; j

[
wi; j

Ai
(�F)n+1=2i; j + (Si)

n+1=2
i; j

]

Un+1
j =Un

j +
�t
�j

∑
j∈N (i)

Pi; j

[
wi; j

Aj
(�F)n+1=2i; j + (Sj)

n+1=2
i; j

] (41)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309–345



SHALLOW WATER MODELS WITH POROSITY 319

where the source term (Si)
n+1=2
i; j is estimated as

(Si)
n+1=2
i; j =

−�−

�+ − �−
wi; j

Ai
�S0; � (42)

where �S0; � is computed according to Equations (25) and (40). Conversely, the contribution
of the bottom and porosity source term to the momentum equation in the cell j is given by

(Sj)
n+1=2
i; j =

�+

�+ − �−
wi; j

Aj
�S0; � (43)

3.4. Computation of the transverse momentum �ux

The transverse momentum �ux is given by the third component of the vector equation (11).
If the velocity at the interface is positive the momentum �ux must be computed using the
value vL. Otherwise the value vR must be used. The following formula accounts for both
situations:

(�huv)i; j ∼= (�uh)i; j + |(�uh)i; j|
2

vL +
(�uh)i; j − |(�uh)i; j|

2
vR (44)

3.5. Computation of the friction source term

The friction source term is discretized in the global coordinate system (x; y) using a time
splitting procedure. Treating the friction terms separately from the other terms leads to the
following system of coupled Ordinary Di�erential Equations (ODEs):

d(�h)
dt

=0 (45a)

d(�hux)
dt

=−
(

1
K2h4=3

+ sx

)
(u2x + u2y)

1=2�ghux (45b)

d(�huy)
dt

=−
(

1
K2h4=3

+ sy

)
(u2x + u2y)

1=2�ghuy (45c)

Substituting Equation (45a) into Equations (45b)–(45c) and dividing by �h leads to

dux

dt
=−

(
1

K2h7=3
+ sx

)
(u2x + u2y)

1=2gux (46a)

duy

dt
=−

(
1

K2h7=3
+ sy

)
(u2x + u2y)

1=2guy (46b)

The coupled Ordinary Di�erential Equations (46a)–(46b) are semi-discretized over each cell i
using the following explicit linearization that allows the coupling between u and v to be
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broken:

dux

dt
=−

(
1

K2hn7=3
i

+ sx

)[
(u2x)

n
i + (u

2
y)

n
i

]1=2
gux (47a)

duy

dt
=−

(
1

K2hn7=3
i

+ sy

)[
(u2x)

n
i + (u

2
y)

n
i

]1=2
guy (47b)

Equations (47) have the following analytical solution:

un+1
xi = exp

[
−
([
(u2x)

n
i + (u

2
y)

n
i

]1=2
K2hn7=3

i

+ sx

)
g�t

]
un
xi

un+1
yi
= exp

[
−
([
(u2x)

n
i + (u

2
y)

n
i

]1=2
K2hn7=3

i

+ sy

)
g�t

]
un
yi

(48)

It is recalled that sx and sy accounts for an additional head loss due to urban singularities
(see Appendix B for the details of the derivation).

3.6. Stability constraint

The numerical scheme being explicit, it is subject to a stability constraint that yields a max-
imum permissible computational time step. The maximum permissible time step is such that
the sum of the areas of the domain of dependence of the interfaces of each given cell should
not exceed the area of this cell. This criterion has proved to preclude instabilities from
appearing even in the case of an overlap of the domains of dependence of the interfaces
when the �ow is strongly divergent [24]. The area Ai; j of the domain of dependence of an
interface (i; j) is bounded by the following quantity:

Ai; j6wi; j�tmax
{[
(u2x)

n
i + (u

2
y)

n
i

]1=2
+ cni ;

[
(u2x)

n
j + (u

2
y)

n
j

]1=2
+ cnj

}
(49)

where the quantity between accolades is an upper bound for the speed of the fastest charac-
teristic issued from the interface. The time step should be such that∑

j∈N (i)
Ai; j6Ai for all i (50)

A su�cient condition for Equation (50) to be satis�ed given the relationship (49) is that the
maximum permissible time step �tmax be de�ned as

�tmax =min
i

Ai∑
j∈N (i)wi; jmax

{[
(u2x)ni + (u2y)

n
i

]1=2 + cni ;
[
(u2x)nj + (u2y)

n
j

]1=2 + cnj
} (51)

Note that in the case of a rectangular grid the condition reduces to the standard one-dimensio-
nal Courant–Friedrichs–Lewy condition that the sum of the Courant numbers in each direction
of space should not exceed unity.
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4. COMPUTATIONAL EXAMPLES

Two types of computational examples are provided in the present section. The �rst type
of example consists of analytical test cases where the quality of the numerical solution is
assessed via a comparison with analytical or semi-analytical solutions. Such tests are described
in Sections 4.1–4.3. The analytical test cases presented in Sections 4.1–4.3 are derived from
classical problems encountered in the shallow water literature but di�er from these in that
a variable porosity is introduced into the equations. Sections 4.1 and 4.2 deal with one-
dimensional problems. Section 4.3 deals with a two-dimensional problem. The second type
of example allows the validity of the modi�ed shallow water equations to be assessed by
comparing the model results with experimental data. This is the subject of Section 4.4.

4.1. One-dimensional dambreak with variable porosity

The �rst computational example consists of a one-dimensional dambreak simulation over a
�at bottom with a porosity varying from 0 at the left-hand boundary of the domain to 1 at
the right-hand boundary. The parameters of the test case are given in Table I. Note that under
the assumption of a one-dimensional behaviour and a linearly varying porosity Equation (1)
becomes

@
@t
(�xxU) +

@
@x
(�xxF)=S (52)

where �x=d�=dx is a constant. The momentum source term S0; x reduces to

S0; x=�xg
h2

2
(53)

Dividing Equations (52)–(53) by �x leads to the expression of the classical shallow water
equations in cylindrical coordinates, where x now plays the role of the radial coordinate.
The one-dimensional problem is therefore equivalent to a circular dambreak problem with
a uniform porosity. The radius of the dam is equal to x0 and the water depths inside and
outside the circular region are given by h0;L and h0;R, respectively. Figures 4–9 compare the
numerical solution of the variable porosity problem to the reference solution obtained solving
the circular dambreak problem with a uniform porosity. The circular dambreak problem used
a reference solution is solved over a re�ned grid of cell width �x=10−4 m. The convergence
of the reference solution was checked by carrying out simulations on grids with a decreasing

Table I. Parameters of the one-dimensional dambreak test case with variable porosity.

Symbol Meaning Value

g Gravitational acceleration 9:81m2=s
h0;L Initial water depth on the left-hand side of the dam 10m
h0;R Initial water depth on the right-hand side of the dam 1m
L Length of the domain 100m
x0 Location of the dam 50m
�x Cell size 1m, 0.1m, 0.01m
�x Radial derivative of the porosity 0.1=m
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Figure 4. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at t=4 s (left) and t=10 s (right) for a cell width �x=1m and a

computational time step �t=2:2× 10−2 s.

cell width. No signi�cant di�erence being detected between the solutions obtained for cell
widths �x=10−3 and 10−4 m, the solution for �x=10−4 m is considered as converged.
Figure 4 shows the pro�les obtained using the second-order MUSCL reconstruction at t=4

and 10 s for a cell width �x=1m and a time step �t=2:2× 10−2 s that corresponds to the
maximum permissible time step. Figure 5 shows the pro�les obtained for the same cell size
and a time step �t=10−3 s. Figures 6 and 7 represent the same pro�les as do Figures 3
and 4, respectively, with both �x and �t divided by 10. Figures 8 and 9 present the results
for a cell size and time step 100 times as small as in Figures 4 and 5. The numerical solution
can be seen to converge to the semi-analytical solution when both the cell size and time step
are reduced.
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Figure 5. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at t=4 s (left) and t=10 s (right) for a cell width �x=1m and a

computational time step �t=10−3 s.

4.2. One-dimensional dambreak across a porosity discontinuity

The second computational example consists of a one-dimensional dambreak simulation across
a porosity discontinuity. In this test the porosity is equal to unity on the upstream side of the
dam and is smaller on the downstream side of the dam. The parameters of the test case are
given in Table II. The discontinuity in the value of the porosity at x0 leads to a reduction in
the exchange section between the upstream and downstream sides. Therefore, the structure of
the solution of this problem is di�erent from that of the classical dambreak problem. The part
of the solution located to the right of the discontinuity has the same structure as the solution
of the classical dambreak problem, where a region of constant state is connected to the right
state of the Riemann problem by a shock wave and to the location of the initial discontinuity

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309–345



324 V. GUINOT AND S. SOARES-FRAZÃO
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Figure 6. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at t=4 s (left) and t=10 s (right) for a cell width �x=0:1m

and a time step �t=2:2× 10−3 s.

by a rarefaction wave. In contrast with the classical dambreak problem, the rarefaction wave
does not spread on the left-hand side of the discontinuity because the porosity is larger
there, leading to a reduced �ow velocity. The region located immediately to the left of the
discontinuity is therefore a region of constant state, connected to the left state of the Riemann
problem by a rarefaction wave travelling to the left (Figure 10). The values U1 and U2 in
the regions of constant state can be determined by solving the following system of equations:

uL + 2(ghL)1=2 = u1 + 2(gh1)1=2 (54a)

�Lh1u1 =�Rhdud (54b)
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Figure 7. One-dimensional dambreak problem with variable porosity. Reference
and numerical solutions at t=4 s (left) and t=10 s (right) for a cell width

�x=0:1m and a time step �t=10−4 s.

�L
(
h1u21 +

g
2
h21
)
=�R

(
hdu2d +

g
2
h2d
)

(54c)

ud + 2(ghd)1=2 = u1 + 2(gh2)1=2 (54d)

ud − (ghd)1=2 = 0 (54e)

(h2 − hR)s= h2u2 − hRuR (54f)

h1u1s= h1u21 +
g
2
(h21 − h22) (54g)
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Figure 8. One-dimensional dambreak problem with variable porosity. Reference and
numerical solutions at t=4 s (left) and t=10 s (right) for a cell width �x=0:01m

and a time step �t=2:2× 10−4 s.

where s is the propagation speed of the shock, and hd and ud denote the water depth and
the velocity, respectively, on the right-hand side of the porosity discontinuity. Equation (54a)
expresses the invariance of the quantity u + 2(gh)1=2 across the rarefaction wave heading to
the left. Equations (54b)–(54c) express mass and momentum conservation across the porosity
discontinuity. Equation (54d) expresses the invariance of the quantity u+ 2(gh)1=2 across the
rarefaction wave issued from the porosity discontinuity and Equation (54e) states critical con-
ditions at the discontinuity. Equations (54f)–(54g) express mass and momentum conservation
across the shock. Solving Equations (54a)–(54g) for h1, u1, h2, u2, hd, ud and s allows the
solution to be determined uniquely. In the present case the solution was obtained using a
Newton–Raphson procedure. Figure 11 gives a comparison of the numerical and analytical
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Figure 9. One-dimensional dambreak problem with variable porosity. Reference
and numerical solutions at t=4 s (left) and t=10 s (right) for a cell width

�x=0:01m and a time step �t=10−5 s.

pro�les for a cell width �x=1m and computational time steps �t=10−3 and 2:7× 10−4 s.
The latter value of the time step corresponds to the maximum permissible value allowed by
the stability constraint. Figure 12 compares the analytical solution and the numerical solution
obtained using a cell width �x=0:1m and time steps �t=10−4 and 2:7× 10−3 s. As in the
previous test, re�ning the mesh does not yield any signi�cant improvement in the quality of
the solution. In both cases a strong numerical di�usion appears across both the porosity dis-
continuity and the rarefaction wave, and both the unit discharge and the �ow velocity appear
to be slightly overestimated. Nevertheless, the propagation speeds of the various waves are
computed correctly.
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Table II. Parameters of the one-dimensional dambreak test case with porosity discontinuity.

Symbol Meaning Value

g Gravitational acceleration 9:81m2=s
h0;L Initial water depth on the left-hand side of the dam 10m
h0;R Initial water depth on the right-hand side of the dam 1m
L Length of the domain 100m
x0 Location of the dam 50m
�x Cell size 1m, 0.1m
�L Porosity on the left-hand side of the dam 1
�R Porosity on the right-hand side of the dam 0.5 and 0.1

x

u

u1

u2

ud

uL = 0 uR = 0

x

t

x

h

h1

h2
hd

hL

hR

UL UR

U1 U2

Figure 10. Structure of the analytical solution for the dambreak problem across a porosity discontinuity.

4.3. Two-dimensional dambreak with variable porosity

The third test case is a circular dambreak simulation where the porosity is variable in space.
The porosity �eld is given by

�(x; y) =
�max

max(r; r0)

r =
1

[(x − x0)2 + (y − y0)2]1=2

(55)
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Figure 11. Dambreak problem across a porosity discontinuity. Results computed using a
MUSCL reconstruction at t=4 s for a cell width �x=1m and a time step �t=10−3 s

(left) and �t=2:7× 10−2 s (right).

where (x0; y0) are the coordinates of the centre of the dam. It is easy to check that
substituting Equation (55) into the cylindrical version of Equation (1) leads to the classical
one-dimensional shallow water equations. Therefore, the circular dambreak problem written
in cylindrical coordinates with a porosity proportional to the inverse of the radial coordinate
is equivalent to the one-dimensional dambreak problem with a constant porosity. The one-
dimensional dambreak problem has an analytical solution [25]. The parameters of the test case
are given in Table III. Figure 13 shows a perspective view of the computed water depths at
t=4 s. Figure 14 gives a comparison between the numerical and analytical solutions at t=4 s,
that is, shortly before the rarefaction wave reaches the centre of the dam, for a 1m × 1m
and a 0:25m × 0:25m grid. The cross-sections plotted in Figure 14 is drawn along the main
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Figure 12. Dambreak problem across a porosity discontinuity. Results computed using a
MUSCL reconstruction at t=4 s for a cell width �x=0:1m and a time step �t=10−4 s

(left) and �t=2:7× 10−3 s (right).

direction of the grid. The di�erences between the pro�les drawn along the grid diagonals and
the main grid directions were found to be small. The behaviour of the numerical solution can
be seen to converge to the analytical solution.

4.4. Toce test case

The purpose of this test case is to demonstrate the usefulness and the validity of the porous
approach for the large scale modelling of �oods in the presence of urbanized regions. The
present subsection aims to show that a re�ned two-dimensional model may advantageously be
replaced with a larger-scale model, based on a much coarser grid, where the urbanized area is
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Table III. Parameters of the circular dambreak test case with variable.

Symbol Meaning Value

g Gravitational acceleration 9:81m2=s
h0;L Initial water depth on the left-hand side of the dam 10m
h0;R Initial water depth on the right-hand side of the dam 1m
L Dimensions of the domain 200m
r0 Radius of the dam 50m
x0 x-coordinate of the centre of the dam 100m
y0 y-coordinate of the centre of the dam 100m
�x, �y Cell size in the x- and y-directions 1m, 0.25m
�max Maximum value of the porosity in the domain 1

Figure 13. Circular dambreak problem with variable porosity. Perspective view
of the computed water depth at t=4 s.

represented using a reduced porosity. The test case was initially de�ned in the framework of
the IMPACT European project [1]. It consists of experiments performed using a scale model
of the Italian Toce valley at CESI (Italy). The model, the plan shape of which is roughly
trapezoidal, is 7m long and 3.5–5m wide depending on the location. During the IMPACT
experiments, square blocks were implemented in the scale model. Two con�gurations were
tested during the project: aligned and staggered. The aligned con�guration (Figure 15) is
chosen for the present example because it is the least favourable con�guration for a represen-
tation using the porous approach. Indeed, the presence of preferential �owpaths induced by
the aligned blocks should be expected to be very di�cult to represent using a porosity that
re�ects only a statistical property of the urban area. Two models were built. In the �rst model
the grid is re�ned so as to provide a detailed discretization of the model geometry between the
blocks (see detailed views of the computational grids in Figure 16). The equations solved in
this model are the classical two-dimensional equations without porosity. The blocks are repre-
sented by impermeable boundaries. The second model uses a much coarser grid and solves the
modi�ed equations with porosity. In this model the rectangular area occupied by the blocks
is characterized by a porosity smaller than unity. The values adopted for the porosity in this
zone is the fraction of the cross-section available to the �ow (that is, 4=9). The value of the
Strickler coe�cient was calibrated to be 60 all over the model. An additional head loss due
to the singularities was incorporated in the urban area. The formulation retained is detailed

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309–345



332 V. GUINOT AND S. SOARES-FRAZÃO
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Figure 14. Circular dambreak problem with variable porosity. Analytical and
numerical solutions obtained using a MUSCL reconstruction at t=4 s for a cell

width �x=1m (left) and �x=0:25m (right).

in Appendix B. The classical shallow water model and the model with porosity count 12 122
and 3226 cells, respectively. The numerical experiment consisted in simulating the e�ect of
an input hydrograph used in one of the IMPACT experiments (Figure 17) at the upstream
boundary of the model and comparing the simulation results given by both models. Figure 18
shows the free surface elevations and the unit discharges computed by the porosity model
at t=20 s. Two straight lines are de�ned, along which pro�les of the computed free surface
elevations are drawn. Pro�le 1 is located in the middle of one of the ‘streets’ between the
blocks. Pro�le 2 is aligned with the centres of the square blocks. Figure 19 gives a compar-
ison of the computed free surface elevations along these two pro�les. Quite expectedly, the
free-surface elevation computed by the re�ned and coarse models are di�erent in the region
occupied by the blocks (i.e. the part of the pro�le located between the points A and B). In
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Figure 15. Topography of the valley for the Toce test case. Locations of the square blocks
in the aligned con�guration. Contour line spacing 0.005m.
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Figure 16. Detailed view of the mesh in the aligned con�guration for the classical shallow
water model (left) and for the shallow water model with porosity (right). Note that the
coarse mesh in the model with porosity follows the contour of the urbanized zone (bold

grey line in the �gure on the right-hand side).

particular, the oscillations of the free surface along pro�les 1 and 2 in the classical shallow
water model are due to the presence of the blocks that obstruct the �ow and cause local
perturbations in the water level. Obviously, such details cannot be represented in the porosity
model. Similarly, the local depression on the downstream side of the zone occupied by the
blocks is due to local factors that cannot be represented by the model with porosity.
It is stressed that this should not be regarded as a failure of the porosity model, but as an

inevitable consequence of the concept of porosity that is intended to re�ect the macroscopic
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Figure 17. Unit discharge injected at the upstream boundary of the domain.
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Figure 18. Plan view of the computed free surface elevations and unit discharges at t=20 s
using the large scale model with porosity. Contour line spacing 0.01m.
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Figure 19. Longitudinal pro�les of the free surface elevations computed at t=20 s using the
re�ned model (solid line) and the coarse model with porosity (dots) along pro�les 1 (left)
and 2 (right). The error bars represent the measuring precision of the pressure gauges.
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properties of the geometry. In contrast, the slope of the free surface, and therefore the head
gradient, can be observed to be similar in both models, which indicates that the porosity
concept is a viable alternative to the classical shallow water equations for the determination
of the average �ow characteristics in the urbanized area.
The comparison between the computed and measured water levels shows that the results of

both the classical shallow water model and the porosity model match the measurements. The
water levels seem to be overestimated by both models in the downstream part of the urban
area along pro�le 1 and slightly underestimated by both models in the central part of the
area in pro�le 2. It should be remembered however that the measurements consist of recorded
bottom pressure and that multiple wave re�ections and strongly curved �owpaths may cause
the hydrostatic assumption not to be entirely valid in the close neighbourhood of the blocks.
A point in favour of the shallow water model with porosity is that its results do not depart
further from the experimental data than do the classical shallow water model results.
It should be noted that the 60 s simulation required 41 s CPU for the coarse model and

540 s CPU for the re�ned model on the same Pentium 4 processor. This example shows that
large scale shallow water models with porosity may usefully contribute to the calculation of
far-�eld �ow conditions that can be used as boundary conditions for more re�ned �ow models
over urban areas.

5. CONCLUDING REMARKS

A modi�ed Harten-Lax-van Leer (HLL) solver has been proposed for the solution of modi-
�ed two-dimensional shallow water equations with porosity. When the porosity is uniform the
modi�ed equations are equivalent to the classical two-dimensional shallow water equations.
The structure of the solution of the modi�ed equations (number of waves and their propaga-
tion celerities, thus the stability criterion) is identical to that of the classical shallow water
equations.
When the porosity is variable in space, an additional source term appears in the momentum

equations and the classical formulation of the HLLC Riemann solver does not allow equi-
librium and steady-state conditions to be satis�ed. The modi�ed solver allows steady-state
solutions to be restored and is shown to perform well against analytical solutions in one
and two dimensions of space with variable porosity. The comparison with the re�ned �ow
model of the Toce valley indicates that the concept of porosity is a viable option for the
representation of the in�uence of urban areas in large-scale �ow models. The authors admit
not having expected such a good behaviour from the porosity model for the Toce application
because of the small number of blocks (4× 5) involved in the test. The concept of porosity,
that is supposed to express a statistical property of the urban medium, was not expected to
be meaningful at such a small scale.
The porosity can be easily determined a priori from maps or aerial photographs because it

is a direct geometrical property of the medium. In the urban area the head loss is triggered to a
small extent by bottom and wall friction and to a large extent by the multiple wave re�ections
against the urban structures and the local changes in the �ow regime. A macroscopic head
loss formulation based on the classical head loss formulae of hydraulics is proposed in the
present paper.
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In addition to the numerical treatment of the equations, future research and model validation
should focus on methods for the determination of head loss coe�cients from the geometrical
characteristics of the urban zones. It also seems obvious that the �ne tuning of such coe�cients
in real-world applications will require the comparison with historical records, as is already
done for the determination of the Strickler coe�cient in engineering studies with classical
shallow water models.

APPENDIX A: DERIVATION OF THE MODIFIED SHALLOW WATER EQUATIONS
AND THEIR DISCRETIZATION

The equations are derived by carrying out a mass and momentum balance over a rectangu-
lar volume d� of horizontal and vertical dimensions �x and �y, respectively. The deriva-
tion of the continuity and the x-momentum equations are examined in Sections A.1 and
A.2, respectively. The y-momentum equation being derived exactly in the same way as
the x-momentum equation, devoting a separate subsection to its derivation is not necessary.
Section A.3 deals with the discretization of the equations in conservation form on unstructured
grids. In what follows, only the conservation part of the equations is dealt with.

A.1. The continuity equation

The continuity equation is derived �rst. The volume V of water contained in the control
volume is given by

V =
∫ y0+�y

y0

∫ x0+�x

x0
�(x; y)h dx dy (A1)

where (x0; y0) are the coordinates of the lower left corner of the control volume. The volume
�uxes FV;W and FV;E across the western and eastern sides, respectively, are given by

FM;W =
∫ y0+�y

y0
(�hux)(x0; y) dy

FM;E =
∫ y0+�y

y0
(�hux)(x0 + �x; y) dy

(A2)

The discharges QS and QN across the southern and northern sides, respectively, are given by

FM;S =
∫ x0+�x

x0
(�huy)(x; y0) dx

FM;N =
∫ x0+�x

x0
(�huy)(x; y0 + �y) dx

(A3)

The continuity equation can be written as

@V
@t
=FM;W − FM;E + FM;S − FM;N (A4)
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Substituting Equations (A1)–(A3) into Equation (A4) gives

@
@t

∫ y0+�y

y0

∫ x0+�x

x0
�(x; y)h dx dy −

∫ y0+�y

y0
(�hux)(x0; y) dy +

∫ y0+�y

y0
(�hux)(x0 + �x; y) dy

−
∫ x0+�x

x0
(�huy)(x; y0) dx +

∫ x0+�x

x0
(�huy)(x; y0 + �y) dx=0 (A5)

that can be rewritten as

∫ y0+�y

y0

∫ x0+�x

x0

@
@t
(�h)(x; y) dx dy +

∫ y0+�y

y0
[(�hux)(x0 + �x; y)− (�hux)(x0; y)] dy

+
∫ x0+�x

x0
[(�huy)(x; y0 + �y)− (�huy)(x; y0)] dx=0 (A6)

When both �x and �y tend to 0 the following limits hold:

(�hux)(x0 + �x; y)− (�hux)(x0; y) −−−−→
�x→0

�x
@
@x
(�hux)

(�huy)(x; y0 + �y)− (�huy)(x; y0)−−−−→
�x→0

�y
@
@y
(�huy)

(A7)

and the integrals become equivalent to the product of the point values and the width of the
integration interval. Therefore Equation (A6) becomes

�x�y
@
@t
(�h) + �y�x

@
@x
(�hux) + �x�y

@
@x
(�huy)=0 (A8)

Dividing by �x�y yields the continuity equation

@
@t
(�h) +

@
@x
(�hux) +

@
@x
(�huy)=0 (A9)

A.2. The momentum equation

The momentum equation is derived in the x-direction only. The y-momentum equation, that
can be derived following exactly the same reasoning, will not be detailed here. The total
x-momentum in the control volume is given by

Mx=�
∫ y0+�y

y0

∫ x0+�x

x0
(�uh)(x; y) dx dy (A10)
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The x-momentum �uxes across the various edges of the control volume are given by

FM;W = �
∫ y0+�y

y0
(�u2xh)(x0; y) dy

FM;E = �
∫ y0+�y

y0
(�u2xh)(x0 + �x; y) dy

FM;S = �
∫ x0+�x

x0
(�uxuyh)(x; y0) dx

FM;N = �
∫ x0+�x

x0
(�uxuyh)(x; y0 + �y) dx

(A11)

The external forces exerted in the x-direction on the water stored in the control volume are
the following. The pressure force PW is exerted from left to right on the western side of the
control volume. It is given by

PW =
�g
2

∫ y0+�y

y0
(�h2)(x0; y) dy (A12)

The pressure force PE exerted from right to left on the eastern side of the control volume is
given by

PE = − �g
2

∫ y0+�y

y0
(�h2)(x0 + �x; y) dy (A13)

The reaction Wx exerted by the walls on the water body owing to the variation of the porosity
in the x-direction is given by (see e.g. Reference [26] for a detailed proof)

Wx=
�g
2

∫ y0+�y

y0

∫ x0+�x

x0

@�
@x

h2 dx dy (A14)

The x-reaction Bx of the bottom to the weight of the water body per unit surface is the product
of the local bottom pressure, the bottom slope in the x-direction and the porosity (because
the reaction is exerted only at the points of the control volume occupied by the water).

Bx= − �g
∫ y0+�y

y0

∫ x0+�x

x0
(�h)(x; y)

@zb
@x
dx dy (A15)

The resistance Rx due to friction is accounted for by a classical Strickler law. The friction
force is exerted only at the points occupied by the water

Rx= − �gh
∫ y0+�y

y0

∫ x0+�x

x0

[
(u2x + u2y)

1=2

K2h4=3
�ux

]
(x; y) dx dy (A16)

The momentum balance can be written as

@Mx

@t
=FM;W − FM;E + FM;S − FM;N + PW − PE +Wx + Bx + Rx (A17)
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It is �rst noted that in the limit of vanishing �x and �y, the di�erences between the �uxes
and the forces at opposite edges of the control volume can be simpli�ed as follows:

FM;W − FM;E ≈
�x→0

�
∫ y0+�y

y0
− @

@x
(�u2xh)�x dy

FM;S − FM;N ≈
�y→0

�
∫ x0+�x

x0
− @

@x
(�uxuyh)�y dx

PW − PE ≈
�x→0

�g
2

∫ y0+�y

y0
− @

@x
(�h2)�x dy

(A18)

Substituting Equations (A14)–(A16) and Equation (A18) into Equation (A17) and dividing
by � leads to

@
@t

∫ y0+�y

y0

∫ x0+�x

x0
(�uxh)(x; y) dx dy +

∫ y0+�y

y0

@
@x
(�u2xh)�x dy

+
∫ x0+�x

x0

@
@y
(�uxuyh)�y dx +

g
2

∫ y0+�y

y0

@
@x
(�h2)�x dy

=
g
2

∫ y0+�y

y0

∫ x0+�x

x0

@�
@x

h2 dx dy − g
∫ y0+�y

y0

∫ x0+�x

x0
(�h)(x; y)

@zb
@x
dx dy

−gh
∫ y0+�y

y0

∫ x0+�x

x0

[
(u2x + u2y)

1=2

K2h4=3
�ux

]
(x; y) dx dy (A19)

Observing that the integral of a function tends to the product of the function point value and
the size of the domain when the size of the domain tends to zero, (A19) is rewritten in the
limit of �x, �y and �t tending to zero

�x�y
@
@t
(�uxh) + �x�y

@
@x
(�u2xh) + �x�y

@
@y
(�uxuyh) + �x�y

g
2

@
@x
(�h2)

= �x�y
g
2
@�
@x

h2 − �x�yg�h
@zb
@x

− �x�ygh
(u2x + u2y)

1=2

K2h4=3
�ux (A20)

Dividing Equation (A20) by �x�y yields

@
@t
(�uxh) +

@
@x

(
�u2xh+

g
2
�h2

)
+

@
@y
(�uxuyh)

=
g
2
@�
@x

h2 − g�h
@zb
@x

− gh
(u2x + u2y)

1=2

K2h4=3
�ux (A21)
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A similar reasoning leads to the following equation for the y-momentum:

@
@t
(�uyh) +

@
@x
(�uxuyh) +

@
@y

(
�v2yh+

g
2
�h2

)

=
g
2
@�
@y

h2 − g�h
@zb
@y

− gh
(u2x + u2y)

1=2

K2h4=3
�uy (A22)

The vector form of Equations (A9), (A21) and (A22) is Equation (1)

@
@t
(�U) +

@
@x
(�F) +

@
@y
(�G)=S

with the de�nitions (2)–(4) for U, F, G and S.

A.3. Discretization and numerical solution

Equation (A1) is discretized using a �nite volume formalism on unstructured grids. The
continuity equation is discretized as

hn+1
i = hn

i − �t
�iAi

∑
j∈N (i)

[
(�hux)

n+1=2
i; j n(x)i; j + (�huy)

n+1=2
i; j n(y)i; j

]
wi; j (A23)

where hn
i is the average value of h over the cell i at the time level n, Ai is the area of the cell

i, (hux)
n+1=2
i; j and (huy)

n+1=2
i; j are the average value of the x- and y-mass �uxes, respectively, at

the interface (i; j) between the time levels n and n+ 1, N (i) is the set of neighbour cells of
the cell i, n(x)i; j and n(y)i; j are the x- and y-components of the normal unit vector (positive from i
to j) to the interface (i; j); wi; j is the width of the interface (i; j), and �t is the computational
time step. The quantity (�hux)

n+1=2
i; j n(x)i; j + (�huy)

n+1=2
i; j n(y)i; j represents the scalar product of the

unit discharge and the normal unit vector, that is, the mass �ux in the normal direction to
the interface. Equation (A23) can be rewritten as

hn+1
i = hn

i − �t
�iAi

∑
j∈N (i)

(�hu)n+1=2i; j wi; j (A24)

where u is the velocity in the direction normal to the interface. This velocity is computed as in
Equations (27)–(29) by solving a Riemann problem in the direction normal to the interface.
The x- and y-momentum equation are discretized as follows. Solving the Riemann problem
in the direction normal to the interface (i; j) yields the momentum �uxes F� and F in the
�- and  -directions, respectively. Such �uxes are de�ned as

F� =
(
�hu2 + �

g
2
h2
)n+1=2

i; j

F = (�huv)n+1=2i; j

(A25)

where v is the velocity in the direction tangent to the interface. The �uxes are computed using
Equations (30) and (43). The �uxes F� and F at the interface (i; j) yield increases (�q�; i)i; j
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and (�q ; i)i; j in the �- and  -momentum in the cell i over a time step �t

(�q�; i)i; j =−F�wi; j�t

(�q ; i)i; j =−F wi; j�t
(A26)

The increases (�q�; i)i; j and (�q ; i)i; j correspond to momentum increases (�qx; i)i; j and
(�qy; i)i; j in the x- and y-directions, respectively

(�qx; i)i; j = (�q�; i)i; jn
(x)
i; j − (�q ; i)i; jn

(y)
i; j

(�qy; i)i; j = (�q�; i)i; jn
(y)
i; j + (�q ; i)i; jn

(x)
i; j

(A27)

Substituting Equation (A26) into Equation (A27) leads to

(�qx;i)i; j =−[F�n
(x)
i; j − F n

(y)
i; j ]wi; j�t

(�qy; i)i; j =−[F n
(x)
i; j + F�n

(y)
i; j ]wi; j�t

(A28)

The total increase in the x- and y-momentum in the cell i is obtained by summing up the
individual contributions of all the edges (i; j) of the cell i

�qx; i =
∑

j∈N (i)
(�qx; i)i; j= − ∑

j∈N (i)
[F�n

(x)
i; j − F n

(y)
i; j ]wi; j�t

�qy; i =
∑

j∈N (i)
(�qy; i)i; j= − ∑

j∈N (i)
[F n

(x)
i; j + F�n

(y)
i; j ]wi; j�t

(A29)

By de�nition, �qx; i and �qy; i also satisfy the following equalities:

�qx; i = [(�hux)n+1i − (�hux)ni ]Ai

�qy; i = [(�huy)n+1i − (�huy)ni ]Ai

(A30)

Substituting Equation (A30) into (A29) and rearranging yields

(�hux)n+1i = (�hux)ni − �t
Ai

∑
j∈N (i)

[
F�n

(x)
i; j − F n

(y)
i; j

]
wi; j

(�huy)n+1i = (�huy)ni − �t
Ai

∑
j∈N (i)

[
F n

(x)
i; j + F�n

(y)
i; j

]
wi; j

(A31)

Dividing by �i leads to

(hux)n+1i = (hux)ni − �t
�iAi

∑
j∈N (i)

[
F�n

(x)
i; j − F n

(y)
i; j

]
wi; j

(huy)n+1i = (huy)ni − �t
�iAi

∑
j∈N (i)

[
F n

(x)
i; j + F�n

(y)
i; j

]
wi; j

(A32)

Given Equation (A25), Equations (A24) and (A32) can be written in vector form as

Un+1
i =Un

i − �t
�iAi

∑
j∈N (i)

Pi; j(�F)
n+1=2
i; j wi; j (A33)
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where U, F and P are de�ned as

U=

⎡
⎢⎢⎣

h

hux

huy

⎤
⎥⎥⎦ ; F=

⎡
⎢⎢⎣

hu

hu2 + gh2=2

huv

⎤
⎥⎥⎦ ; Pi; j=

⎡
⎢⎢⎣
1 0 0

0 n(x)i; j −n(y)i; j

0 n(y)i; j n(x)i; j

⎤
⎥⎥⎦ (A34)

APPENDIX B: INTRODUCTION OF MACROSCOPIC HEAD LOSS FORMULATIONS
IN URBANIZED AREAS

The objective of the present Appendix is to propose a formulation for the friction source term
introduced in Equation (4), recalled here

Sf; x =−�gh
(u2x + u2y)

1=2

K2h4=3
ux − �ghsx(u2x + u2y)

1=2ux

Sf;y =−�gh
(u2x + u2y)

1=2

K2h4=3
uy − �ghsy(u2x + u2y)

1=2uy

(B1)

where K is Strickler’s friction coe�cient, h is the water depth, Sf; x and Sf;y are the slopes
of the energy line in the x- and y-directions, respectively, sx and sy are head loss coe�cients
accounting for the singular head losses due to the urban singularities in the x- and y-directions,
respectively, ux and uy are the x- and y-�ow velocities and � is the porosity. The �rst term
on the right-hand side of Equations (B1) represents the classical head loss due to friction
against the bottom and walls under the wide channel approximation (i.e. the assumption that
the water depth is small compared to the channel width, therefore leading to the equivalence
between the hydraulic radius and the water depth).
Note that it would have been possible to propose a formulation accounting for the head

loss via a single, equivalent Strickler (or Manning, or Chezy) coe�cient. Such a formulation
however is not felt appropriate because in classical Strickler-, Manning- or Chezy-like for-
mulations, friction is assumed to result from the turbulent shear stress within the boundary
layer at the bottom and walls and therefore be proportional to the wetted perimeter (hence the
presence of the hydraulic radius in Strickler’s, Manning’s and Chezy’s formulae). In contrast,
the head loss resulting from a singularity is assumed to be identical over the entire �ow cross-
section and should therefore simply be proportional to the square of the velocities involved,
without any in�uence of the hydraulic radius. This is for instance the case of Borda-like
formulae that express the head loss across a sudden change in the �ow cross-sectional area.
Attempting to account for such head losses via an equivalent Strickler coe�cient would make
the equivalent Strickler coe�cient depend on the hydraulic radius (here, the water depth),
which is not the desired behaviour for such a coe�cient. This is why the formulation (B1) is
proposed instead, where sx and sy can be computed from the local characteristics of the �ow
and urban geometry.
In the application to the Toce test case sx and sy were determined using Borda’s formula.

The impinging �ood wave travelling roughly in a direction parallel to the streets, the �ow
pattern can be viewed as occurring in separate, parallel channels, the cross-sections of which
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w2w1

Figure B1. Representation of the urban �ow pattern using parallel channels.

are subject to a periodic sudden widening and narrowing (Figure B1). The head loss �Hw

is given by Borda’s formula [27]

�Hw=
u21 − u22
2g

(B2)

where u1 and u2 are the velocities in the narrow and wide sections, respectively. Conservation
of mass imposes

u1h1w1 = u2h2w2 (B3)

where h1 and h2 are the water depths in the narrow and wide sections, respectively, and w1
and w2 are the widths of the narrow and wide sections, respectively. Since no distinction is
possible between h1 and h2 in the porosity model, both are taken equal to the water depth h.
Equation (B3) is then simpli�ed into

u1w1 = u2w2 (B4)

Substituting Equation (B4) into Equation (B2) and rearranging gives

�Hw=
w22=w

2
1 − 1
2g

u22 (B5)

In the Toce application u2 was taken equal to the norm of the average �ow velocity, which
corresponds to the following modi�cation for (B5):

�Hw=
w22=w

2
1 − 1
2g

(u2x + u2y) (B6)

The head loss �Hn across a sudden narrowing is given by [27]

�Hw=

[(
1
m

− 1
)2
+
1
9

]
u21
2g

(B7)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 50:309–345



344 V. GUINOT AND S. SOARES-FRAZÃO

where m is the so-called contraction coe�cient, a recommended value for which is 0:62 [27].
Substituting Equation (B4) into Equation (B7) leads to

�Hw=

[(
1
m

− 1
)2
+
1
9

]
w22
w21

u22
2g

≈
[(
1
m

− 1
)2
+
1
9

]
w22
w21

1
2g
(u2x + u2y) (B8)

The sudden widening and narrowing being periodic in space, the slope of the energy line in
the direction longitudinal to the �ow is given by

�Hw +�Hn

L
=

{[(
1
m

− 1
)2
+
10
9

]
w22
w21

− 1
}

u2x + u2y
2gL

(B9)

where L is the spatial period of the widening and narrowing. The slope of the energy line
in the x- and y-directions is obtained by projection onto the x- and y-axes according to the
velocity components. The �nal formula for sx and sy is

sx= sy=

{[(
1
m

− 1
)2
+
10
9

]
w22
w21

− 1
}

1
2gL

(B10)
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